Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 71. DOI: 10.17223/19988621/71/8

Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion

The axisymmetric solid rocket motor (SRM) with an “umbrella” shape is considered in this paper. The numerical algorithm based on the inverse Lax-Wendroff procedure for a gas dynamic equation and on the level-set method for tracking the burning surface is overviewed for internal ballistics problems. Assuming that the propellant combustion proceeds in a quasi-stationary regime and a mass flow from the burning surface depends on the pressure raised to the power of parameter v, the numerical computations of intra-chamber combustion product flows during the main-firing phase are carried out using the numerical algorithm developed for “umbrella”-shaped SRM at different parameter values. The approximation convergence of flow parameters in a case of the stationary propellant surface and average intra-chamber pressure for all the time of motor operation is examined. The numerical simulation results are obtained and analyzed for different “umbrella” inclination angles. Though the developed algorithm has been applied to the motors with a specific shape, it can also be used for propellant grains of different shapes and is easily extended to 3D models.

Download file
Counter downloads: 103

Keywords

solid rocket motor, level-set method, inverse Lax-Wendroff procedure, numerical simulation, internal ballistics, gas dynamics

Authors

NameOrganizationE-mail
Kiryushkin Aleksandr E.Tomsk State Universitylminkov@ftf.tsu.ru
Minkov Leonid L.Tomsk State Universitysashakir94@mail.ru
Всего: 2

References

Милехин Ю.М., Ключников А.Н., Попов В.С. Сопряженная задача моделирования внутрибаллистических характеристик бессопловых РДТТ // Физика горения и взрыва. 2013. Т. 49. № 5. С. 77-85.
Глазунов А.А., Еремин И.В., Жильцов К.Н., Костюшин К.В., Тырышкин И.М., Шувариков В.А. Численное исследование определения величин пульсаций давления и собственных акустических частот в камерах сгорания с наполнителем сложной формы // Вестник Томского государственного университета. Математика и механика. 2018. № 53. С. 59-72. DOI: 10.17223/19988621/53/7.
Cavallini E. Modeling and Numerical Simulation of Solid Rocket Motors Internal Ballistics: PhD thesis. 2010. URL: https://core.ac.uk/download/pdf/74323997.pdf
Sultwald W. Grain regression analysis: Master’s thesis. 2014. URL: https://scholar.sun.ac.za/bitstream/handle/10019.1/86526/sullwald_grain_2014.pdf
Tshokotsha M.H. Internal Ballistic Modelling of Solid Rocket Motors Using Level Set Methods for Simulating Grain Burnback: Master’s thesis. 2016. URL: https://pdfs.semanticscholar.org/d0c7/5902ebacf32fc3c60e57158a9e040b9154f8.pdf
Lorente A.P. Study of Grain Burnback and Performance of Solid Rocket Motors: PhD Thesis. 2013. URL: https://upcommons.upc.edu/bitstream/handle/2099.1/17700/Memoria_Arnau_Pons_Lorente.pdf
Osher S., Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer, 2003. DOI: 10.1007/b98879.
Кирюшкин А.Е., Миньков Л.Л. Численное решение двумерных уравнений газовой динамики с подвижными границами на неподвижной вычислительной сетке на примере задач внутренней баллистики РДТТ // Всероссийская молодежная научная конференция «Все грани математики и механики»: сб. статей. Томск: Издательский Дом ТГУ, 2017. С. 168-176.
Кирюшкин А.Е., Миньков Л.Л. Численное решение задачи внутренней баллистики РДТТ на всем участке работы для зарядов сложной формы // V Всероссийская научнотехническая конференция с международным участием «Актуальные проблемы ракетно-космической техники» («V Козловские чтения»): сб. материалов, 2017. Т. 2. С. 55-64.
Kiryushkin A.E., Minkov L.L. Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase // Journal of Physics: Conference series. 2017. V. 894(1). P. 012041-1-012041-7. DOI: 10.1088/1742-6596/894/1/012041.
Tan S., Shu C.-W. Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws // Journal of Computational Physics. 2010. V. 229(26). P. 8144-8166. DOI: 10.1016/j.jcp.2010.07.014.
Tan S., Shu C.-W., Ning J. Efficient Implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws // Journal of Computational Physics. 2012. V. 231(72). P. 2510-2527. DOI: 10.1016/j.jcp.2011.11.037.
Tan S., Shu C.-W. Inverse Lax-Wendroff Procedure for numerical boundary conditions of hyperbolic equations: Survey and new developments // Advances in Applied Mathematics, Modeling, and Computational Science. 2013. V. 66. P. 41-63. DOI: 10.1007/978-1-4614-5389-5_3.
Gottlieb S., Shu C.-W. Total variation diminishing Runge-Kutta schemes // Mathematics of Computation. 1998. V. 67. P. 73-85. DOI:10.1090/S0025-5718-98-00913-2.
Shu C.-W. Total-variation-diminishing time discretizations // SIAM Journal on Scientific and Statistical Computing. 1988. V. 9. P. 1073-1084. DOI: 10.1137/0909073.
Harten A., Engquist B., Osher S., Chakravarthy S.R. Uniformly high-order accurate nonoscillatory schemes // Journal of Computational Physics. 1987. V. 71(2). P. 231-303. DOI: 10.1137/0724022.
Shu C.-W., Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes // Journal of Computational Physics. 1989. V. 83(1). P. 32-78. dOi: 10.1016/0021-9991(89)90222-2.
 Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 71. DOI: 10.17223/19988621/71/8

Numerical simulation of intra-chamber processes in a solid rocket motor with account for burning surface motion | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 71. DOI: 10.17223/19988621/71/8

Download full-text version
Counter downloads: 252