Numerical study of a swirling turbulent flow through a channel with an abrubt expansion
A strongly swirling turbulent flow through an abrupt expansion is studied using the highly resolved DNS, LES, and SAS to shed more light on a stagnation region and spiral vortex destruction, though these methods require high computational expenses. The vortex fracture induced by a sudden expansion resembles the so-called vortex rope that occurs in hydropower draft tubes. It is known that large-scale spiral vortex structures can be captured by regular RANS turbulence models. In this paper, a numerical study of a strongly swirling flow, which abruptly expands, is carried out using the Reynolds stress models SSG / LRR-RSM and EARSM with experimental measurements implemented by Dellenback et al. (1988). Calculations are carried out using the finite volume method. The flow dynamics is studied at the Reynolds number of 3.0 x 104 at almost constant large swirl numbers of 0.6. The time-averaged velocity and pressure fields, as well as the root-mean-square values of the velocity fluctuations are recorded and studied qualitatively. The obtained results are compared with known experimental data. The aim of this work is to test the ability of the models to describe anisotropic turbulence. It is shown that the SSG / LRR-RSM model is more appropriate for studying such flows.
Keywords
Reynolds-averaged Navier-Stokes equations,
explicit algebraic Reynolds stress models,
SSG/LRR-RSM-w2012 model,
eddy viscosity,
SIMPLEAuthors
Malikov Zafar M. | Academy of Sciences of the Republic of Uzbekistan Institute of Mechanics and Seismic Stability of Structures named after M.T. Urazbayev | malikov.z62@mail.ru |
Madaliev Murodil E. | Fergana Polytechnic Institute | madaliev.me2019@mail.ru |
Всего: 2
References
Versteegh Т.А., Nieuwstadt F.T.M. Turbulent budgets of natural convection in an infinite, differentially heated, vertical channel // Intern. J. Heat Fluid Flow. 1998. V. 19. P. 135-149.
Boudjemadi R., Maupu V., Laurence D., Le Quere P. Direct numerical simulation of natural convection in a vertical channel: A tool for second-moment closure modelling // Proc. Engineering Turbulence Modelling and Experiments 3. Amsterdam: Elsevier, 1996. P. 39.
Peng S.-H., Davidson L. Large eddy simulation of turbulent buoyant flow in a confined cavity // Intern. J. Heat Fluid Flow. 2001. V. 22. P. 323-331.
Cabot W., Moin P. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow // Flow, Turbulence and Combustion. 1999. V. 63. P. 269-291.
Сентябов А.В., Гаврилов А.А., Дектерев А.А. Исследование моделей турбулентности для расчета закрученных течений // Теплофизика и аэромеханика. 2011. Т. 18. № 1. С. 81-94.
Hellsten A. New advanced k-ω turbulence model for high-lift aerodynamics // AIAA Journal. 2005. V. 43. No. 9. P. 1857-1869.
Валлин С., Йоханссон А.В. Явная алгебраическая модель напряжений Рейнольдса для несжимаемых и сжимаемых турбулентных течений // Жидкостная механика. 2000. Т. 403. С. 89-132.
Malikov Z.M., Madaliev M.E. Numerical simulation of two-phase flow in a centrifugal separator. fluid dynamics. 2020. V. 55. No. 8. P. 1012-1028.
Dellenback P.A., Metzger D.E., Neitzel G.P. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion // AIAA J. 1988. V. 26(6). P. 669-681.
Leibovich S. Vortex stability and breakdown: survey and extension // AIAA J. 1984. V. 22. P. 1192-1206.
Wang P., Bai X.S., Wessman M., Klingmann J. Large eddy simulation and experimental studies of a confined turbulent swirling flow // Phys. Fluids. 2004. V. 16. P. 3306-3324. DOI: 10.1063/1.1769420.
Gyllenram W., Nilsson H., Davidson L. On the failure of the quasi-cylindrical approximation and the connection to vortex breakdown in turbulent swirling flow // Phys. Fluids. 2007. V. 19. P. 045108.
Nilsson H. Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load // 26th IAHR Symposium on Hydraulic Machinery and Systems. Beijing, China, 2012.
Mak H. , Balabani S. Near field characteristics of swirling flow past a sudden expansion. Chem. Eng. Sci. 2007. V. 62. P. 6726-6746.
Gyllenram W., Nilsson H. and Davidson L. Large eddy simulation of turbulent swirling flow through a sudden expansion // 23rd IAHR Symposium on Hydraulic Machinery and Systems. Yokohama, Japan, 2006.
Gyllenram W. and Nilsson H. Design and validation of a scale-adaptive filtering technique for LRN turbulence modeling of unsteady flow // J. Fluid Eng.-T ASME. 2008. V. 130(5).
Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. 840 с.
Wilcox D.C. Turbulence Modeling for CFD. California, 1994.
Launder B.E., Reece G.J., Rodi W. Progress in the development of a Reynolds - stress turbulence closure // J. Fluid Mech. 1975. V. 68. P. 537-566.
Speziale C.G., Sarkar S., Gatski T.B. Modeling the pressure strain correlation of turbulence: an invariant dynamical systems approach // J. Fluid Mech. 1991. V. 227. P. 245-272.
Nazarov F.X., Malikov Z.M., Rakhmanov N.M. Simulation and numerical study of two-phase flow in a centrifugal dust catcher // AMSD-2019 Journal of Physics: Conference Series 1441 (2020) 012155 IOP Publishing. DOI: 10.1088/1742-6596/1441/1/012155.
Julianne C. Dudek., Jan-Renee Carlson. Evaluation of full Reynolds stress turbulence models in Fun3D // NASA/TM-2017-219468. P. 1-36, Texas, January 9-13, 2017.
Турубаев Р.Р., Шваб А.В. Численное исследование аэродинамики закрученного потока в вихревой камере комбинированного пневматического аппарата // Вестник Томского государственного университета. Математика и механика. 2017. № 47. С. 87-98.
Хмелева М.Г., Даммер В.Х., Тохметова А.Б., Миньков Л.Л. Численное исследование вихреобразования в жидком металле под действием дискового завихрителя // Вестник Томского государственного университета. Математика и механика. 2017. № 46. С. 76-85.
Маликов З.М., Мадалиев М.Э. Математическое моделирование турбулентного течения в центробежном сепараторе. // Вестник Томского государственного университета. Математика и механика. 2021. № 71. С. 121-138.