Modeling the accumulation of damages and the failure of ceramic composites Al2O3 - ZrO2, obtained by additive technologies, under high-speed loading
Functional ceramic composite materials are widely used in industry due to their high strength, hardness, high operating temperature, and chemical inertness. Among the most famous types of functional ceramics are the ceramic composites based on the Al2O3-20% ZrO2 system. In this work, the effect of the loading rate on the crack resistance is studied as well as the effect of the crack resistance of ceramic composites Al2O3-20% t-ZrO2 with a mass content of submicron t-ZrO2 particles on the high-speed compression of model specimens in shock waves and on the high-speed tension in the region of interaction of unloading waves. It is established that nonlinear effects of the mechanical behavior of ceramic composites ZrO2-Al2O3 with a transformation-hardened matrix obtained by additive technologies are manifested at shock loading amplitudes close to or exceeding the Hugoniot elastic limit. Nonlinear effects under intense dynamic impacts on the considered composites are associated with the processes of self-organization of deformation regimes at a mesoscopic level, as well as with the occurrence of martensitic phase transformations in the matrix volumes, which are adjacent to strengthening particles. The modeling approach presented in this work can be used to determine the dynamic characteristics of ceramic composites up to shock loads of 1000 m/s.
Keywords
ceramic materials,
structure of composite materials,
additive technology,
dynamic loading,
transformation hardeningAuthors
Promakhov Vladimir V. | Tomsk State University | vvpromakhov@mail.ru |
Korobenkov Maksim V. | Tomsk State University | schulznikita97@gmail.com |
Schultz Nikita A. | Tomsk State University | schulznikita97@gmail.com |
Zhukov Aleksandr S. | Tomsk State University | schulznikita97@gmail.com |
Olisov Andrey V. | Tomsk State University | schulznikita97@gmail.com |
Bakhmat Vladislav R. | Tomsk State University | schulznikita97@gmail.com |
Dronov Filipp Yu. | Tomsk State University | schulznikita97@gmail.com |
Myalkovskiy Igor’S. | Tomsk State University | schulznikita97@gmail.com |
Всего: 8
References
Yin Q., Zhu B., Zeng H. Microstructure, Property and Processing of Functional Ceramics. Metallurgical Industry Press, and Springer: Shanghai, China, 2009.
Promakhov V.V., Zhukov I.A., Vorozhtsov S.A., Zhukov A.S., Vorozhtsov A.B. Thermal shock-resistant ceramic composites based on zirconium dioxide // Refractories and Industrial Ceramics. 2016. V. 56. No. 6. P. 610-614. DOI: 10.1007/s11148-016-9898-5.
Korobenkov M.V., Kulkov S.N. Structure and properties of ZTA composites for joint replacement // AIP Conf. Proc. 2017. V. 1882. No. 020035. DOI: 10.1063/1.5001614.
Evans A.G., Cannon R.M. Overview no. 48: Toughening of brittle solids by martensitic transformations // Acta Metall. 1986. V. 34. No. 5. P. 761-800.
Hannink R.H.J., Kelly P.M., Muddle B.C. Transformation toughening in zirconia-containing ceramics // J. Am. Ceram. Soc. 2000. V. 83. No. 3. P. 461-487. DOI: 10.1111/j. 1151-2916.2000.tb01221.x.
Промахов В.В., Жуков А.С., Ворожцов А.Б., Шульц Н.А., Ковальчук С.В., Кожевников С.В., Олисов А.В., Клименко В.А. Особенности структуры и механических свойств керамики, полученной по аддитивной технологии // Изв. вузов. Физика. 2019. Т. 62. № 5. С. 132-137. DOI: 10.17223/00213411/62/5/132.
Diaz O.G., Luna G.G., Liao Z., Axinte D. The new challenges of machining ceramic matrix composites (CMCs): Review of surface integrity // Int. J. Mach. Tools Manuf. 2019. V. 139. P. 24-36. DOI: 10.1016/j.ijmachtools.2019.01.003.
Промахов В.В., Савиных А.С., Дубкова Я.А., Шульц Н.А., Жуков А.С., Разоренов С.В. Динамическая прочность керамических материалов на основе ZrO2, полученных по аддитивной технологии // Письма в журнал технической физики. 2019. Т. 45. № 19. С. 28-32. DOI: 10.21883/PJTF.2019.19.48314.17926.
Promakhov V., Zhukov A., Dubkova Y., Zhukov I., Kovalchuk S., Zhukova T., Olisov A., Klimenko V., Savkina N. Structure and properties of ZrO2-20%Al2O3 ceramic composites obtained using additive technologies // Materials. 2018. V. 11. 2361. DOI: 10.3390/ ma11122361.
Cui H., Hensleigh R., Chen H., Zheng X. Additive manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterial // J. Mater. Res. 2018. V. 33. P. 350-371. DOI: 10.1557/jmr.2018.11.
Chen Z., Song X., Lei L., Chen X., Fei C., Chiu C.T., Qian X., Ma T., Yang Y., Shung K., et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing // Nano Energy. 2016. V. 27. P. 78-86. DOI: 10.1016/j.nanoen.2016.06.048.
Babaee S., Shim J., Weaver J.C., Chen E.R., Patel N., Bertoldi K. 3D soft metamaterials with negative Poisson’s ratio // Adv. Mater. 2013. V. 25. P. 5044-5049. DOI: 10.1002/adma. 201301986.
Cox S.C., Thornby J.A., Gibbons G.J., Williams M.A., Mallick K.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications // Mater. Sci. Eng. 2015. V. 47. P. 237-247. DOI: 010.1016/j.msec.2014.11.024.
Basu B., Vleugels J., Van Der Biest O. Transformation behavior of tetragonal zirconia: role of dopant content and distribution // Mater. Sci. and Eng. A. 2004. V. 366. P. 338-347. DOI: 10.1016/j.msea.2003.08.063.
Skripnyak V. Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation // AIP Conf. Proc. 2012. V. 1426. P. 965-970. DOI: 10.1063/1.3686438.
Tai Y.S., Tang C.C. Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact // Theor. Appl. Fract. Mec. 2006. V. 45. No. 2. P. 117-127. DOI: 10.1016/j.tafmec.2006.02.007.
Panteki E., Maca P., Haussler-Combe U. Finite element analysis of dynamic concrete-to-rebar bond ex-periments in the push-in configuration // Int. J. Impact. Eng. 2017. V. 106. P. 155-170. DOI: 10.1016/j.ijimpeng.2017.03.016
Potyondy D.O., Cundall P.A. A bonded-particle model for rock // Int. J Rock Mech Min Sci. 2004. V. 41. P. 1329-1364. DOI: 10.1016/j.ijrmms.2004.09.011.
Jing L., Stephansson O. Fundamentals of discrete element method for rock engineering: theory and applications. Elsevier, 2007. 562 p.
Kuznetsov V.P., Tarasov S.Yu., Dmitriev A.I. Nano structuring burnishing and subsurface shear instability // Journal of Materials Processing Technology. 2015. V. 217. P. 327-335. DOI: 10.1016/j.jmatprotec.2014.11.023.
Гольдштейн Р.В., Осипенко Н.М. Модель хрупкого разрушения материалов при сжатии // Вестник Пермского государственного технического университета. Механика. 2009. № 17. С. 45-57.
Wong T.-f., David C., Zhu W. The transition from brittle faulting to cataclastic flow in porous sandstones // J. Geophys. Res. 1997. V. 102. P. 3009-3025. DOI: 10.1029/96jb03281.
Wong T.-f., Baud P. The brittle-ductile transition in porous rock: A review // J. Struct. Geol. 2012. V. 44. P. 25-53. DOI: 10.1016/j.jsg.2012.07.010.
Стефанов Ю.П. Моделирование поведения консолидированных и высокопористых геологических сред в условиях сжатия // Вестник Пермского государственного технического университета. Математическое моделирование систем и процессов. 2007. № 15. С. 156-169.
Walton G., Hedayat A., Kim E., et al. Post-yield strength and dilatancy evolution across the brittle-ductile transition in indiana limestone // Rock Mech Rock Eng. 2017. V. 50. P. 1-20. DOI: 10.1007/s00603-017-1195-1.
Johnson G.R., Holmquist T.J. An improved computational constitutive model for brittle materials // High Pressure Science and Technology. AIP Conference Proceedings. 1993. V. 309. P. 981-984. DOI: 10.1063/1.46199.
Cronin D.S., Bui K., Kaufman. C. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA // 4th European LS-DYNA Users conference. D-I-47-60, Ulm, Germany, 2003.
Guimaraes F.A.T., Silva K.L., Trombini V., et. al. Correlation between microstructure and mechanical properties of Al2O3/ZrO2 nanocomposites // Ceramic International. 2009. V. 35. P. 741-745. DOI: 10.1016/j.ceramint.2008.02.002
Tuan W.H., Chen R.Z., Wang T.C., et. al. Mechanical properties of Al2O3/ZrO2 composites // J. European Ceramic Society. 2002. V. 22. P. 2827-2833. DOI: 10.1016/s0955-2219(02)00043-2.
Gust W.H., Royce E.B. Dynamic yield strengths of B4C, BeO and Al2O3 ceramics // J. Appl. Phys. 1971. V. 42. P. 276-295. DOI: 10.1063/1.1659584.
Gust W.H., Holt A.C., Royce E.B. Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds // J. Appl. Phys. 1973. V. 44. P. 550-560. DOI: 10.1063/1.1662224.
Batsanov S.S. Effects of explosions on materials: Modification and synthesis under high-pressure shock compression. N.Y.: Springer, 1994.
Fried L.E., Howard W.M., Souers P.C. A new equation of state library for high pressure thermochemistry // Twelfth Symposium (International) on Detonation. Office of Naval Research. San Diego, 2002. P. 567-575.
Жуков И.А., Гаркушкин Г.В., Ворожцов С.А., Хрусталев А.П., Разоренов С.В., Кветинская А.В., Промахов В.В., Жуков А.С. Особенности механических характеристик композитов Al-Al2O3, полученных взрывом, при ударно-волновом девормировании // Изв. вузов. Физика. 2015. Т. 58. № 9. С. 141-144.
Casellas D., Nagl M.M., Llanes L., Anglada M. Fracture toughness of alumina and ZTA ceramics; micro structural coarsening effect // Journal of Materials Processing Technology. 2003. V. 143. P. 148-152. DOI: 10.1016/s0924-0136(03)00396-0.
Tuan W.H., Chen R.Z, Wang T.C., et. al. Mechanical properties of Al2O3/ZrO2 composites // Journal of European Ceramic Society. 2002. V. 22. P. 2827-2833. DOI: 10.1016/s0955-2219(02)00043-2.
Korobenkov M.V., Kulkov S.N. Simulation of fracture of the bone implant with the porous structure // AIP Conf. Proc. 2016. V. 1760. No. 020033. DOI: 10.1063/1.4960252.
Rao P.G., Iwasa M., Tanaka T., et. al. Preparation and mechanical properties of Al2O3-15%ZrO2 composites // Scripta Materialia. 2003. V. 48. P. 437-441. DOI: 10.1016/s1359-6462(02)00440-2.
Grigoriev A.S., Shilko E.V., Skripnyak V.A., Smolin A.Yu., Psakhie S.G., Bragov A.M., Lomunov A.K., Igumnov L.A. The numerical study of fracture and strength characteristics of heterogeneous brittle materials under dynamic loading // AIP Conf. Proc. 2014. V. 1623. P. 175-178. DOI: 10.1063/1.4898911.
Korobenkov M.V., Kulkov S.N., Nayamark O.B., Khorechko U.V., Rochina A.V. Deformation and Damage Accumulation in a Ceramic Composite under Dynamic Loading // IOP Conf. Ser.: Mater. Sci. Eng. 2016. V. 112. No. 012044. DOI: 10.1088/1757-899x/112/1/012044.
Lloberas-Valls, O., Huespe A.E., Oliver J., Dias I.F. Strain injection techniques in dynamic fracture modelling // Comput. Methods Appl. Mech. Engrg. 2016. V. 308. P. 499-534. DOI: 10.1016/j.cma.2016.05.023.
Yue K., Lee H.P., Olson J.E., Schultz R.A. Apparent fracture toughness for LEFM applications in hydraulic fracture modelling // Engineering Fracture Mechanics. 2020. V. 230. No. 106984. DOI: 10.1016/j.engfracmech.2020.106984.