Temperature aspects of a cuboid crystal in photoacoustic interaction
When a solid crystal undergoes photoacoustic effect, excitation process occurs due to a fraction of incident radiation absorbed by that sample. The nature of excitation depends on the energy of incident radiation. The relaxation processes, generally non-radiative in nature, are observed. Alternate processes of absorption and non- radiative relaxation cause variation in translational temperature in atoms of the crystal. In this paper, the thermal aspects of an isotropic cuboid crystal of elastic material in photoacoustic interaction are presented. This theoretical determination is carried out by applying the finite Marchi-Fasulo integral transform method within the crystal size limitations of a homogeneous cuboid crystal. The results are obtained in terms of infinite series, and the numerical calculations are carried out by using MATHCAD-7 software. The transient translational temperature on the surface of the cuboid crystal in photoacoustic interaction is mathematically determined in terms of thermal conductivity of the elastic material of the crystal.
Keywords
cuboid crystal,
photoacoustic cell,
photoacoustic effect,
Marchi -Fasulo integral transform,
transient translational temperatureAuthors
Sarode Abhijit P. | Bendale Girls College | abhijitsarode@yahoo.com |
Всего: 1
References
McDonald F.A. (1980) Photoacoustic effect and the physics of waves. American Journal of Physics. 48(1). pp. 41-47. DOI: 10.1119/1.12250.
Schmid T. (2006) Photoacoustic spectroscopy for process analysis. Analytical and Bioanalytical Chemistry. 384(5). pp. 1071-1086. DOI: 10.1007/s00216-005-3281-6.
Davies S.J., Edwards C., Taylor G.S., Palmer S.B. (1993) Laser-generated ultrasound: its properties, mechanisms and multifarious applications. Journal of Physics D: Applied Physics. 26(3). pp. 329-348. DOI: 10.1088/0022-3727/26/3/001.
Hutchins D.A., Wilkins D.E. (1985) Elastic waveforms using laser generation and electromagnetic acoustic transducer detection. Journal of Applied Physics. 58. pp. 2469-2477. DOI: 10.1063/1.335923.
Nosaka Y., Igarashi R., Miyama H. (1985) Pulsed photoacoustic spectroscopy for powder suspension using a flash lamp. Analytical Chemistry. 57(1). pp. 92-94. DOI: 10.1021/ ac00279a026.
Nelson E.T., Patel C.K.N. (1981) Response of piezoelectric transducers used in pulsed opto-acoustic spectroscopy. Optics Letters. 6(7). pp. 354-356. DOI: 10.1364/OL.6.000354.
Rosencwaig A. (1975) Photoacoustic spectroscopy of solids. Physics Today. 28(9). pp. 23-30. DOI: 10.1063/1.3069155.
Rosencwaig A., Gersho A. (1976) Theory of the photoacoustic effect with solids. Journal of Applied Physics. 47(1). pp. 64-68. DOI: 10.1063/1.322296.
McDonald F., Wetsel G. (1978) Generalized theory of the photoacoustic effect. Journal of Applied Physics. 49(4). pp. 2313-2322. DOI: 10.1063/1.325116.
Quimby R., Yen W. (1980) Photoacoustic theory including energy migration. Journal of Applied Physics. 51(9). pp. 4985-4990. DOI: 10.1063/1.328377.
Chow H. (1980) Theory of three dimensional photoacoustic effect with solids. Journal of Applied Physics. 51(8). pp. 4053-4056. DOI: 10.1063/1.328255.
Merzadinova G., Sakipov K., Sharifov D., Mirzo A., Bekeshev A. (2019) Laser photoacoustics method for determination of the coefficients of thermal conductivity and thermal diffusivity of materials. Eurasian Physical Technical Journal. 16(1). pp. 94-98. DOI: 10.31489/ 2019No1/94-98.
Viator J.A., Jacques S.L., Prahl S.A. (1999) Depth profiling of absorbing soft materials using photoacoustic methods. IEEE Journal of Selected Topics in Quantum Electronics. 5(4). pp. 989-996. DOI: 10.1109/2944.796321.
Sigrist M.W. (1999) Photoacoustic spectroscopy, method and instrumentation. Encyclopedia of Spectroscopy and Spectrometry. 3. p. 1810.
Pincus R.L. (2014) Photoacoustic spectroscopy: a method for investigating weak molecular absorption. Reed College Journal. p. 43.
Bell A.G. (1880) Photoacoustic imaging and spectroscopy. American Journal of Science. 20. p. 305.
Haisch C., Niessner R. (2002) Light and sound - photoacoustic spectroscopy. Spectroscopy Europe. 14(5). pp. 10-15.
West G.A., Barrett J.J., Siebert D.R., Reddy K.V. (1983) Photoacoustic spectroscopy. Review of Scientific Instruments. 54. pp. 797-817. DOI: 10.1063/1.1137483.
White R.M. (1963) Generation of elastic waves by transient surface heating. Journal of Applied Physics. 34(12). pp. 3559-3567. DOI: 10.1063/1.1729258.
Salikhov T.Kh., Melikkhudzha N., Khodzhaev Y.P., Khodzhakhonov I.T. (2017) K teorii generatsii fotoakusticheskogo signala tverdotel'nymi obraztsami [To the theory of generation of photoacoustic signal by solid state samples]. Doklady Akademii nauk Respubliki Tajikistan - Reports of the Academy of Sciences of the Republic of Tajikistan. 60(11-12). pp. 569-574.
Nelson E.T., Patel C.K.N. (1981) Response of piezoelectric transducers used in pulsed opto-acoustic spectroscopy. Optics Letters. 6(7). pp. 354-356. DOI: 10.1364/OL.6.000354.
Scruby C.B., Wadley H.N.G. (1978) A calibrated capacitance transducer for the detection of acoustic emission. Journal of Physics D: Applied Physics. 11(1). pp. 1487-1494. DOI: 10.1088/0022-3727/11/11/007.
Sarode A.P., Mahajan O.H. (2018) Theoretical aspects of photoacoustic effect with solids.International Journal for Science and Advance Research in Technology. 4(2). pp. 1237-1242. DOI: 10.13140/RG.2.2.21345.45921.
Ailawalia P., Sachdeva S.K., Singh P.D. (2017) Effect of mechanical force along the interface of semi-infinite semiconducting medium and thermo-elastic micropolar cubic crystal. Cogent Mathematics. 4(1). pp. 231-234. DOI: 10.1080/23311835.2017.1347991.
Nyawere P.W.O., Makau N.W., Amolo G.O. (2014) First-principles calculations of the elastic constants of the cubic, orthorhombic and hexagonal phases of BaF2. Physica B: Condensed Matter. 434. pp.122-128. DOI: 10.1016/j.physb.2013.10.051.
Mahmoud S.R., Ghaleb Sh.A., Alzahrani A.K., Ghandourah E. (2017) Mathematical model for problem of stresses in thermo-magneto-piezoelectric material. Applied Mathematics & Information Sciences. 11(4). pp. 1217-1223. DOI: 10.18576/amis/110429.
Patel S.R. (1971) Inverse problems of transient heat conduction with radiation. The Mathematics Education. 5(4). pp. 85-90.
Sneddon I.N. (1974) The Use of Integral Transform. New Delhi: Tata McGraw-Hill.