Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 74. DOI: 10.17223/19988621/74/14

Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading

Aluminum alloys are widely used in industry due to such parameters as low cost, high corrosion resistance, low density, and good weldability. In this regard, new aluminum alloys with improved strength and operational properties are needed. At present, it is important to increase strength properties of aluminum alloys by introducing into their melt high-melting high-modulus nano- and microparticles that can significantly refine the grain structure and contribute to the stress-strain state. As a rule, in works on the introduction of pre-synthesized refractory dispersed particles into aluminum melts, non-metallic materials, such as oxides, nitrides, carbides, and intermetallic compounds, are used. However, the effect of high-melting tungsten particles on the structure and physical and mechanical properties of aluminum alloys has been insufficiently studied. The paper investigates the effect of tungsten nanoparticles on the structure and mechanical properties of an AA5056 alloy. The structures of the AA5056-W composite and initial alloy are studied by means of optical and scanning electron microscopy. Introduction of 0.5 wt% tungsten nanoparticles does not modify the structure of the aluminum alloy, but due to dispersed hardening, it increases the hardness, yield stress, ultimate strength, and maximum deformation before metal matrix destruction.

Download file
Counter downloads: 63

Keywords

dispersion-hardened alloys, nanosized particles, structure, mechanical properties, ductility

Authors

NameOrganizationE-mail
Khrustalyov Anton P.Tomsk State Universitytofik0014@gmail.com
Platov Vladimir V.Tomsk State Universityvova.platov.85@mail.ru
Kakhidze Nikolay I.Tomsk State Universitykakhidze.n@yandex.ru
Zhukov Il’ya A.Tomsk State Universitygofra930@gmail.com
Vorozhtsov Aleksandr B.Tomsk State Universityabv1953@mail.ru
Всего: 5

References

Kawazoe M., Shibata T., Mukai T., Higashi K. Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion // Scripta Materialia. 1997. V. 36(6). P. 699-705. DOI: 10.1016/S1359-6462(96)00446-0.
Jones R.H. The influence of hydrogen on the stress-corrosion cracking of low-strength Al-Mg alloys // JOM. 2003. V. 55(2). P. 42-46. DOI: 10.1007/s11837-003-0225-5.
Kannan C., Ramanujam R. Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review // Science and Technology of Materials. 2018. V. 30(2). P. 109-119. DOI: 10.1016/j.stmat.2018.05.005.
Meti V.K.V., Shirur S., Nampoothiri J., Ravi K.R., Siddhalingeshwar I.G. Synthesis, characterization and mechanical properties of AA7075 based MMCs reinforced with TiB2 particles processed through ultrasound assisted in-situ casting technique // Transactions of the Indian Institute of Metals. 2018. V. 71(4). P. 841-848. DOI: 10.1007/s12666-017-1216-5.
Basak A.K., Pramanik A., Prakash C. Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression // Materials Science and Engineering: A. 2019. V. 763. Article 138141. P. 1-9. DOI: 10.1016/j.msea.2019.138141.
Jafari H., Idris M.H., Ourdjini A., Abdul Kadir M.R. An investigation on interfacial reaction between in-situ melted AZ91D magnesium alloy and ceramic shell mold during investment casting process // Materials Chemistry and Physics. 2013. V. 138(2-3). P. 672-681. DOI: 10.1016/j.matchemphys.2012.12.037.
Tahamtan S., Halvaee A., Emamy M., Zabihi M.S. Fabrication of Al/A206-Al2O3 nano/micro composite by combining ball milling and stir casting technology // Materials & Design. 2013. V. 49. P. 347-359. DOI: 10.1016/j.matdes.2013.01.032.
Hosseini N., Karimzadeh F., Abbasi M.H., Enayati M.H. Tribological properties of A16061-A12O3 nanocomposite prepared by milling and hot pressing // Materials & Design. 2010. V. 31(10). P. 4777-4785. DOI: 10.1016/j.matdes.2010.05.001.
Adeosun S.O., Akpan E.I., Gbenebor O.P., Balogun S.A. Ductility and hardness of chloride cleaned AA6011/SiCp composites // Transactions of Nonferrous Metals Society of China. 2016. V. 26(2). P. 339-347. DOI: 10.1016/S1003-6326(16)64124-9.
Goyal H., Mandal N., Roy H., Mitra S.K., Mondal B. Multi response optimization for processing Al-SiCp composites: An approach towards enhancement of mechanical properties // Transactions of the Indian Institute of Metals. 2015. V. 68(3). P. 453-463. DOI: 10.1007/s12666-014-0476-6.
Abdizadeh H., Baghchesara M.A. Optimized parameters for enhanced properties in Al-B4C composite // Arabian Journal for Science and Engineering. 2018. V. 43. P. 4475-4485. DOI: 10.1007/s13369-017-2929-9.
Khademian M., Alizadeh A., Abdollahi A. Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method // Transactions of the Indian Institute of Metals. 2017. V. 70(6). P. 1635-1646. DOI: 10.1007/s12666-016-0962-0.
Sun Z., Hashimoto H., Wang Q., Park Y., Abe T. Synthesis of Al-Al3Ti composites using pulse discharge sintering process // Materials Transactions, JIM. 2000. V. 41(5). P. 597-600. DOI: 10.2320/matertrans1989.41.597.
Akbari M.K., Baharvandi H.R., Shirvanimoghaddam K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites // Materials and Design. 2015. V. 66. P. 150-161. DOI: 10.1016/j.matdes.2014.10.048.
Katsarou L., Mounib M., Lefebvre W., Vorozhtsov S., Pavese M., Badini C., Molina-Aldareguia J.M., Jimenez C.C., Perez Prado M.T., Dieringa H. Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring // Materials Science and Engineering: A. 2016. V. 659. P. 84-92. DOI: 10.1016/j.msea.2016.02.042.
Sreekumar V.M., Babu N.H., Eskin D.G. Prospects of in-situ a-Al2O3 as an inoculant in aluminum: A feasibility study // Journal of Materials Engineering and Performance. 2017. V. 26(9). P. 4166-4176. DOI: 10.1007/s11665-017-2853-x.
Dieringa H. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review // Journal of Materials Science. 2011. V. 46(2). pp. 289-306. DOI: 10.1007/s10853-010-5010-6.
Puga H., Costa S., Barbosa J., Ribeiro S., Prokic M. Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy // Journal of Materials Processing Technology. 2011. V. 211(11). P. 1729-1735. DOI: 10.1016/j.jmatprotec.2011.05.012.
Kudryashova O.B., Eskin D.G., Khrustalev A.P., Vorozhtsov S.A. Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates // Russian Journal of Non-Ferrous Metals. 2017. V. 58(4). P. 427-433. DOI: 10.3103/ S1067821217040101.
Zhang F., Jacobi A.M. Aluminum surface wettability changes by pool boiling of nanofluids // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. V. 506. P. 438444. DOI: 10.1016/j.colsurfa.2016.07.026.
Lee S., Utsunomiya A., Akamatsu H., Neishi K., Furukawa M., Horita Z., Langdon T.G. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafinegrained Al-Mg alloys // Acta Materialia. 2002. V. 50(3). P. 553-564. DOI: 10.1016/S1359-6454(01)00368-8.
Filatov Y.A., Yelagin V.I., Zakharov V.V. New Al-Mg-Sc alloys // Materials Science and Engineering: A. 2000. V. 280(1). P. 97-101. DOI: 10.1016/S0921-5093(99)00673-5.
Ahmad Z. The properties and application of scandium-reinforced aluminum // JOM. 2003. V. 55(2). P. 35-39. DOI: 10.1007/s11837-003-0224-6.
Krishnan B.P., Surappa M.K., Rohatgi P.K. The UPAL process: A direct method of preparing cast aluminium alloy-graphite particle composites // Journal of Materials Science. 1981. V. 16. P. 1209-1216. DOI: 10.1007/BF01033834.
Javdani A., Pouyafar V., Ameli A., Volinsky A.A. Blended powder semisolid forming of Al7075/Al2O3 composites: Investigation of micro structure and mechanical properties // Materials & Design. 2016. V. 109. P. 57-67. DOI: 10.1016/j.matdes.2016.07.042.
Cao X., Shi Q., Liu D., Feng Z., Liu Q., Chen G. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors // Composites Part B. 2018. V. 139. P. 97-105. DOI: 10.1016/j.compositesb.2017.12.001.
Singh R., Singh R., Dureja J.S., Farina I., Fabbrocino F. Investigations for dimensional accuracy of Al alloy/Al-MMC developed by combining stir casting and ABS replica based investment casting // Composites Part B: Engineering. 2017. V. 115. P. 203-208. DOI: 10.1016/j.compositesb.2016.10.008.
Philofsky E.Intermetallic formation in gold-aluminum systems // Solid-State Electron. 1970. V. 13(10). P. 1391-1394 DOI: 10.1016/0038-1101(70)90172-3.
Dixit S., Kashyap S., Kailas S.V. Chattopadhya K. Manufacturing of high strength aluminium composites reinforced with nano tungsten particles for electrical application and investigation on in-situ reaction during processing // Journal of Alloys and Compounds. 2018. V. 767. P. 1072-1082. DOI: 10.1016/j.jallcom.2018.07.110.
Promakhov V.V., Khmeleva M.G., Zhukov I.A., Platov V.V., Khrustalyov A.P., Vorozhtsov A.B. Influence of vibration treatment and modification of A356 aluminum alloy on its structure and mechanical properties // Metals. 2019. V. 9(1). Article 87. P. 1-9. DOI: 10.3390/ met9010087.
Dieringa H., Katsarou L., Buzolin R., Szakacs G., Horstmann M., Wolff M., Mendis C., Vorozhtsov S., StJohn D. Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability // Metals. 2017. V. 7(10). Article 388. P. 1-13. DOI: 10.3390/met7100388.
Belov N.A. Effect of eutectic phases on the fracture behavior of high-strength castable aluminum alloys // Metal Science and Heat Treatment. 1995. V. 37(5-6). P. 237-242. DOI: 10.1007/BF01152226.
Zhang Z., Chen D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites // Materials Science and Engineering: A. 2008. V. 483-484. P. 148-152. DOI: 10.1016/j.msea.2006.10.184.
Samal P., Vundavilli P.R., Meher A., Mahapatra M.M. Recent progress in aluminum metal matrix composites: A review on 1055 processing, mechanical and wear properties // Journal of Manufacturing Processes. 2020. V. 59. P. 131-152. DOI: 10.1016/j.jmapro.2020.09.010.
Sreekumar V.M., Babu N.H., Eskin D.G., Fan Z. Structure-property analysis of in-situ Al-MgAl2O4 metal matrix composites synthesized using ultrasonic cavitation // Materials Science and Engineering: A. 2015. V. 628. P. 30-40. DOI: 10.1016/j.msea.2015.01.029.
Ramakrishnan N. An analytical study on strengthening of particulate reinforced metal matrix composites // Acta Materialia. 1996. V. 44(1). P. 69-77. DOI: 10.1016/1359-6454(95)00150-9.
Khrustalyov A.P., Kozulin A.A., Zhukov I.A., Khmeleva M.G., Vorozhtsov A.B., Eskin D., Chankitmunkong S., Platov V.V., Vasilyev S.V. Influence of titanium diboride particle size on structure and mechanical properties of an Al-Mg alloy // Metals. 2019. V. 9(10). Article 1030. P. 1-14. DOI: 10.3390/met9101030.
 Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 74. DOI: 10.17223/19988621/74/14

Influence of tungsten nanoparticles on the structure and mechanical behavior of the 1550 aluminum alloy under quasi-static loading | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 74. DOI: 10.17223/19988621/74/14

Download full-text version
Counter downloads: 174