Comparative analysis of combustion of particles of boron, boron carbide, boron nitride and carbon in air
Combustion models of main components of condensed combustion products (CCP) of boron-containing solid propellants: boron, boron carbide, boron nitride, and carbon are analyzed. Using the known experimental data, the parameters of the combustion model of boron carbide and boron nitride particles are determined. Using the models of combustion of boron, B4C, BN and carbon particles, parametric calculations of the combustion of both individual abovementioned particles and their mixture, which simulates the composition of the CCP of boron-containing solid propellant, have been carried out. Calculations have shown that combustion of BN has the least effect on the completeness of CCP combustion. This is due to its low calorific value and low content in CCP. Ceteris paribus, carbon particles burn the fastest; however, their contribution to the completeness of CCP combustion is less than that of boron and boron carbide due to their lower calorific value.
Keywords
boron,
boron carbide,
boron nitride,
carbon,
particle combustion,
combustion efficiency,
ducted rocket engine,
condensed combustion products,
mathematical modelingAuthors
Rashkovskiy Sergey A. | Ishlinsky Institute for Problems in Mechanics RAS; Tomsk State University | rash@ipmnet.ru |
Fedorychev Alexander V. | Federal Center for Dual-Use Technologies "Soyuz" | dgr56@mail.ru |
Milekhin Yuri M. | Federal Center for Dual-Use Technologies "Soyuz" | fcdt@mail.ru |
Всего: 3
References
Рашковский С.А., Милёхин Ю.М., Федорычев А.В. Влияние распределенного подвода воздуха в камеру дожигания ракетно-прямоточного двигателя на полноту сгорания частиц бора // Физика горения и взрыва. 2017. Т. 53. № 6. С. 38-52. DOI: 10.15372/FGV20170605.
Field M.A. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200 K and 2000 K // Combustion and Flame. 1969. V. 13. No. 3. P. 237-252. DOI: 10.1016/0010-2180(69)90002-9.
Рашковский С.А., Милёхин Ю.М., Федорычев А.В. Повышение полноты сгорания частиц бора в ракетно-прямоточном двигателе на твердом топливе за счет распределенной подачи воздуха в камеру дожигания // Доклады Академии наук. 2016. Т. 471. № 6. С. 686-691. DOI: 10.7868/S0869565216360196.
Kim S., Natan B. Inlet geometry and equivalence ratio effects on combustion in a ducted rocket // Journal of Propulsion and Power. 2015. V. 31. No. 2. P. 619-631.
Hou X. et al. The reaction mechanism and kinetics of a-BN powder in wet air at 1273 K // Journal of the American Ceramic Society. 2013. V. 96. No. 6. P. 1877-1882.
Hou X.M., Hu X.J., Chou K.C. Kinetics of thermal oxidation of titanium nitride powder at different oxidizing atmospheres // Journal of the American Ceramic Society. 2011. V. 94. No. 2. P. 570-575.
Xinmei H. et al. Effect of temperature on reaction of hexagonal BN powder in wet air between 1073 and 1373 K // International Journal of Applied Ceramic Technology. 2015. V. 12. P. E138-E145.
Chou K.C. A kinetic model for oxidation of Si-Al-O-N materials // Journal of the American Ceramic Society. 2006. V. 89. No. 5. P. 1568-1576.
Chou K.C., Hou X.M. Kinetics of high-temperature oxidation of inorganic nonmetallic materials // Journal of the American Ceramic Society. 2009. V. 92. No. 3. P. 585-594.
Li Y.Q., Qiu T. Oxidation behaviour of boron carbide powder // Mater. Sci. Eng. A. 2007. V. 444. - P. 184-191.
Kiliqarslan A., Toptan F., Kerti I., Piskin S. Oxidation of boron carbide particles at low temperatures // Materials Letters. 2014. V. 128. P. 224-226.
Федорычев А.В., Милёхин Ю.М., Рашковский С.А. Конденсированные продукты сгорания борсодержащих твердых топлив // Доклады Академии наук. 2021. Т. 500. С. 56-61. DOI: 10.31857/S2686953521050058.
Liu L.L., He G.Q., Wang Y.H., Hu S.Q. Chemical analysis of primary combustion products of boron-based fuel-rich propellants // Rsc Advances. 2015. V. 5(123). P. 101416-101426.
Liu L.L., He G.Q., Wang Y.H., Hu S.Q., Liu Y.M. Factors affecting the primary combustion products of boron-based fuel-rich propellants // Journal of Propulsion and Power. 2017. V. 33(2). P. 333-337.
Архипов В.А. и др. Моделирование процессов зажигания и горения борсодержащих твердых топлив // Физика горения и взрыва. 2021. Т. 57. № 3. С. 58-64.
Савельев А.М., Титова Н.С. Расчетно-теоретический анализ влияния оксидной пленки бората алюминия на условия воспламенения одиночных частиц диборида алюминия // Физика горения и взрыва. 2021. Т. 57. № 3. С. 65-78.
Буланин Ф.К. и др. Воспламенение аровзвесей боридов металлов // Физика горения и взрыва. 2020. Т. 56. № 1. С. 65-71.
Глотов О.Г., Суродин Г.С. Горение свободно падающих в воздухе агломератов из алюминия и бора. II. Результаты экспериментов // Физика горения и взрыва. 2019. Т. 55. № 3. С. 110-117.
Yeh C., Kuo K. Ignition and Combustion of Boron Particles // Progr. Energy Combust. Sci. 1996. V. 22. P. 511-541.
Hussmann B., Pfitzner M. Extended combustion model for single boron particles - Part I: Theory // Combustion and Flame. 2010. V 157. P. 803-821.