Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/13

Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia

Most of the problems on flexible plates are solved in the Föppl-von Karman formulation, which is Love's special case. The constructed algorithms are not economical in terms of implementation on a computer. Therefore, construction of algorithms for the complete calculation of flexible plates with a given degree of accuracy with allowance for the shear and inertia of rotation is becoming a topical issue. The problem of creating an automated inference system and solving the equations of the theory of elasticity and plasticity were first posed in the monograph by V.K. Kabulov. In this work, for the first time, the main problems of algorithmization are formulated and ways of their machine solution are outlined. The problem of algorithmization is solved as follows: depending on geometric characteristics of the object and physical properties of the material, a design scheme of this model is selected; derivation of the initial differential equations and the corresponding boundary and initial conditions; selection of a computational algorithm and numerical solution of the obtained equations; analysis of the obtained numerical results describing the stress-strain state of the structure under consideration. This work consists of an introduction, three sections and a conclusion. In the first paragraph, the equations of motion of rectangular plates are given. Substituting the expression for the force of moments and shearing forces and introducing a dimensionless value, a system of equations in displacements is obtained. In the second section, using the central difference formulas, a system of quasilinear ordinary differential equations is obtained. Taking into account the boundary and initial conditions, the system of equations is reduced to matrix form, which can be solved by the Runge-Kutta method. In the third paragraph, an analysis of the results obtained is presented.

Download file
Counter downloads: 56

Keywords

algorithm, plates, shear, inertia of rotation, theory of elasticity, difference schemes

Authors

NameOrganizationE-mail
Yuldashev Adash Yu.Tashkent State Technical Universityshamshod@rambler.ru
Pirmatov Shamshod T.Tashkent State Technical Universityshamshod@rambler.ru
Всего: 2

References

Вольмир А.С. Нелинейная динамика пластин и оболочек. М.: Наука, 1972. 432 с.
Кабулов В.К. Алгоритмизация в теории упругости и деформационной теории пластичности. Ташкент: Фан, 1966. 394 с.
Демидович Б.П., Марон И.А. (1962) Численные методы анализа / под ред. Б.П. Демидовича. М.: Физматгиз.
Ляв А. Математическая теория упругости. М.-Л.: ОНТИ-НКТЛ ССР, 1935. 674 с.
Юлдашев А., Алибоев А. (1978) Интегрирование уравнения движения гибких оболочек с учетом сдвига и инерций вращения. В.сб.науч.тр. ТашПИ «Численные методы», Ташкент, С. 50-60.
Березин И.С.,Жидков Н.П. (1959) Методы вычислений, Т. I-II, Физматгиз.
Алибоев А., Юлдашев А. (1978) Интегрирование уравнения движения прямоугольных пластин методом сеток. В.сб. науч.тр. ТашПИ «Автоматизация проектирования», Ташкент, Выпуск 237. С. 89-93.
Бате К.Ю. (2010) Методы конечных элементов. М: Физматлит, 1024 с.
Корнишин М.С. (1963) Некоторые вопросы применения метода конечных разностей для решения краевых задач теории пластин // Прикладная механика. Т. 9. № 3.
Юлдашев А., Пирматов Ш.Т., Минарова Н. (2015) Уравнение равновесия гибких круглых пластин // Austrian J. Technical and Natural Sciences. No. 3-4. P. 32-35.
Yuldashev A., Pirmatov Sh.T. (2020) Algorithmization of solving dynamic edge problems of the theory of flexible rectangular plates. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika №-66, pp. 143-157.
Коробейников С.Н. (2000) Нелинейное деформирование твердых тел. Новосибирск: Изд-во СОРАН, 262 с.
Работнов Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1988. 712 с.
Берикханова Г.Е., Жумагулов Б.Т., Кангужин Б.Е. (2010) Математическая модель колебаний пакета прямоугольных пластин с учетом точечных связей // Вестник Томского государственного университета. Математика и механика. № 1(9). C. 72-86.
Базаров М.Б., Сафаров И.И., Шокин Ю.И. (1996)Численное моделирование колебаний диссипативно однородных и неоднородных механических систем. Новосибирск: Изд-во СО РАН, 189 с.
Вячкин Е.С., Каледин В.О., Решетникова Е.В., Вячкина Е.А., Гилева А.Е.(2018) Разработка математической модели статического деформирования слоистых конструкций с несжимаемыми слоями // Вестник Томского государственного университета. Математика и механика. № 55. C. 72-83. DOI: 10.17223/19988621/55/7.
 Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/13

Algorithmization of the solution of dynamic boundary value problems of the theory of flexible plates taking into account shift and rotation inertia | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 75. DOI: 10.17223/19988621/75/13

Download full-text version
Counter downloads: 278