Relative dynamics of shells of a bifullerene complex | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 77. DOI: 10.17223/19988621/77/5

Relative dynamics of shells of a bifullerene complex

In this work, mathematical modeling of relative dynamics of a bifullerene complex is carried out on the assumption that the inner shell does not form covalent bonds with an outer carbon skeleton. This fact enables free angular movements of the inner shell. In particular, the directed rotation of the inner fullerene can be provided. This, in turn, allows for accumulating of a significant fraction of kinetic energy at internal degrees of freedom of the complex under consideration. In this case, the direction of rotations is not related to temperature; the outer shell of the complex restrains the transfer of the stored energy into thermal vibrations. Therefore, calculations are performed to estimate the stability of the rotational motion of an encapsulated fullerene relative to translational displacements of the outer shell. The calculations are carried out using a separate description of the dynamics of closed carbon molecules in terms of translational and rotational displacements. Translational displacements are determined using the equations of motion for the centers of mass of molecules. Rotational displacements are found on the basis of the dynamic Euler equations. The power centers in the considered framework structures of the molecules are carbon atoms. Therefore, the strength characteristics of intermolecular interactions are obtained in accordance with an atom-atom approach. In this case, the interaction parameters of individual atoms correspond to the case when these atoms are located in a structure of the surface carbon crystal.

Download file
Counter downloads: 28

Keywords

numerical modeling, molecular dynamics, fullerenes

Authors

NameOrganizationE-mail
Bubenchikov Mikhail A.Tomsk State Universitymichaell21@mail.ru
Mamontov Dmitriy V.Tomsk State Universityorevaore@mail.ru
Chelnokova Anna S.Tomsk State Universitysmolina-nyuta@mail.ru
Всего: 3

References

Whitener E.K.J. Theoretical Studies of CH4 Inside an Open-Cage Fullerene: Transla tion-Rotation Coupling and Thermodynamic Effects //j. Phys. Chem. 2010. V. 114 (45). P. 12075-12082. doi: 10.1021/jp104601g
Whitener E.K.J., Cross R.J., Saunders M., Iwamatsu Shoichi, Murata S., Nagase S. Methane in open-cage [60]fullene // Journal of the American Chemical Society. 2009. V. 131 (18). Р. 6338-6339. doi: 10.1021/ja901383r
Huang T., Zhao J., Feng M., Dunsch L. et al. A multi-state single-molecule switch actuated by rotation of an encapsulated cluster within a fullerene cage // Chemical Physics Letters. 2012. V. 552 (12). Р. 1-12. doi: 10.1016/j.cplett.2012.09.064
Lima R.F., Brandao J., Marcio M., Moraes F. Effects of rotation in the energy spectrum of C60 // The Europian Physics Journal D. 2014. V. 68 (94). doi: 10.1140/epjd/e2014-40570-4
Konarev D.V., Lyubovskaya R.N., Khasanov S.S. Transition from free rotation of C70 mole cules to static disorder in the molecular C70 complex with covalently linked porphyrin dimers: {(FeIHTPP)2O}xC70 // Journal of Porphyrins and Phthalocyanines. 2010. V. 14 (4). Р. 293-297. doi: 10.1142/S1088424610002112
Warner J.H., Ito Y., Zaka M., Ge L., Akachi T., Okimoto H., Porfyrakis K., Watt A.A.R., Shinohara H., Briggs G.A.D. Rotating Fullerene Chains in Carbon Nanopeapods // Nano Letters. 2008. V. 8 (8). Р. 2328-2335. doi: 10.1021/nl801149z
Glukhova O.E., Zhbanov A.I., Rezkov A.G. Rotation of the inner shell in a C20@C80 nanopar ticle // Physics of the Solid State. 2005. V. 47 (2). P. 390-396. doi: 10.1134/1.1866425
Glukhova O.E. Theoretical study of the structure of the C60@C450 nanoparticle and relative motion of the encapsulated C60 molecule //j. Struct. Chem. 2007. V. 48. P. S141-S146. doi: 10.1007/s10947-007-0157-y
Dunn J.L., Hands I.D., Bates C.A. Pseudorotation in fullerene anions // Journal of Molecular Structure. 2006. V. 838 (1-3). P. 60-65. doi: 10.1016/j.molstruc.2006.12.066
Yangs S., Wey T. et al. Chlorination-Promoted Skeletal-Cage Transformations of C88 Fullerene by C2 Losses and a C-C Bond Rotation // Chemistry. 2015. V. 21 (43). P. 15138-15141. doi: 10.1002/chem.201501549
MacKenzie R.C.I., Frost J.M., Nelson J. A numerical study of mobility in thin films of fullerene derivatives // Phys. Chem. 2010. V. 132. Art. 064904. doi: 10.1063/1.3315872
Herman R.M., Lewis J.C. Vibration-rotation-translation spectrum of molecular hydrogen in fullerite lattices around 80 K // Physica B: Condensed Matter. 2009. V. 404 (8-11). P. 15811584. doi: 10.1016/j.physb.2009.01.029
Lynden-Bell R.M., Michael K.H. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals // Reviews of Modern Physics. 1994. V. 66 (3). Art. 721. doi: 10.1103/RevModPhys.66.721
Griadun V.I. Vacancies in nanotubes and fullerenes // Proceedings of the 16th International Crimean Microwave and Telecommunication Technology, Sevastopol, 11-15 September, 2006. IEEE. 2006. P. 669-670. doi: 10.1109/CRMIC0.2006.256150
Jaron-Becker A., Becker A., Faisal F.H.M. Saturated Ionization of Fullerenes in Intense Laser Fields // Phys. Rev. Letters. 2006. V. 96. Art. 143006. doi: 10.1103/PhysRevLett.96.143006
Slanina Z., Zhao X. Model narrow nanotubes related to C36, C32 and C20: Initial computational structural sampling // Materials Science and Engineering B. 2002. V. 96 (2). P. 164168. doi: 10.1016/S0921-5107(02)00312-4
Bousige C., Verberck B. et al. Lattice dynamics of a rotor-stator molecular crystals: Fullerene-cubane C60 C8H8 // Phys. Rev. B. 2010. V. 82 (19). Art. 195413. doi: 10.1103/PhysRevB.82.195413
Hosseini-Hashemi S., Sepahi-Boroujeni A., Sepahi-Boroujeni S. Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene // Applied Surface Science. 2018. V. 437. P. 366-374. doi: 10.1016/j.apsusc.20m2.141
Yang L., Chen J., Dong J. Stability of single-wall carbon nanotube tori // Physica Status Solidi (B). 2004. V. 241 (6). P. 1269-1273. doi: 10.1002/pssb.200301998
Ruiz A., Hernandez-Rojas J., Breton J., Gomez Llorente J.M. Low-temperature dynamics and spectroscopy in exohedral rare-gas C60 fullerene complexes //j. Phys. Chem. 2001. V. 114. doi: 10.1063/1.1350918
Bozhko S.I., Levchenko E.A., Semenov V.N., Bulatov M.F., Shvets I.V. Rotation dynamics of C60 molecules in a monolayer fullerene film on the WO2/W(110) surface near the rotational phase transition // Journal of Experimental and Theoretical Physics. 2015. V. 120 (5). P. 831-837. doi: 10.1134/S1063776115040032
Bubenchikov A.M., Bubenchikov M.A., Mamontov D.V., Lun-Fu A.V. MD-simulation of fullerene rotations in molecular crystall fullerite // Crystals. 2019. V. 9 (10). Art. 496. doi: 10.3390/cryst9100496
Bubenchikov A.M., Bubenchikov M.A., Mamontov D.V., Kaparulin D.S., Lun-Fu A.V. Dynamic state of columnar structures formed on the basis of carbon nanotori // Fullerenes, Nanotubes and Carbon Nanostructures. 2021. V. 29 (10). P. 825-831. doi: 10.1080/1536383X.2021.1908268
Bubenchikov A.M., Bubenchikov M.A., Mamontov D.V. The dynamic state of a pseudocrystalline structure of B42 molecules // Crystals. 2020. Vol. 10 (6). Art. 510. doi: 10.3390/cryst10060510
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика : в 10 т. М. : Наука, 1988. Т. 1: Механика. 216 с.
 Relative dynamics of shells of a bifullerene complex | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 77. DOI: 10.17223/19988621/77/5

Relative dynamics of shells of a bifullerene complex | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 77. DOI: 10.17223/19988621/77/5

Download full-text version
Counter downloads: 237