A study of the structure and properties of the metal matrix composite materials obtained by a method of direct laser growing
Due to mechanical properties, Inconel family alloys are proven to be functional materials that are used at elevated temperatures in chemically aggressive environments and under high loads. Development of additive technologies has revealed a potential of these alloys as an initial powder raw material for additive manufacturing machines. In this work, the application of metal matrix composite materials in a direct laser growing technology is studied. The technology of self-propagating high-temperature synthesis is used to manufacture the composite material. The study results show that the application of metal matrix materials in the technology of direct laser growing allows one to increase wettability of ceramic particles by a matrix metal. As a result, the quality of particle-matrix borders is improved, the porosity is decreased, and the uniformity of the distribution of particles in the matrix is increased. The structure of the obtained materials is represented by Inconel 625 matrix alloy and inclusions of TiB2 ceramics. The average size of the ceramic particles is less than 300 nm. It is shown that adding to Inconel 625 powder of a composite metal matrix SHS powder of NiTi-TiB2 in an amount of 5 wt% leads to an increase in the microhardness of the material by 1.5 times relative to the materials obtained from pure Inconel 625. At the same time, there is an increase in the ultimate strength of the materials up to 920 MPa and a decrease in the ductility by 15% relative to the samples made of pure Inconel 625 alloy.
Keywords
additive technologies,
ceramic composite materials,
direct laser growing,
heterophase laser powder metallurgy,
investigation of the structure and mechanical propertiesAuthors
Promakhov Vladimir V. | Tomsk State University | vvpromakhov@mail.ru |
Matveev Aleksey E. | Tomsk State University | cool.mr.c@mail.ru |
Schulz Nikita A. | Tomsk State University | schulznikita97@gmail.com |
Bakhmat Vladislav R. | Tomsk State University | bakhmatvr@gmail.com |
Dronov Filipp Yu. | Tomsk State University | filipp_dronov93@mail.ru |
Turanov Timur E. | Tomsk State University | timur.kb2@icloud.com |
Всего: 6
References
Fox G.R., Liang H. Wear mode comparison of high-performance Inconel alloys // Journal of Tribology. 2010. V. 132 (2). Art. 021603. doi: 10.1115/1.4001170 134 Промахов В.В., Матвеев А.Е., Шульц Н.А. и др. Исследование структуры и свойств
Pleass C., Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting //Additive Manufacturing. 2018. V. 24. P. 419-431. doi: 10.1016/j.addma.2018.09.023
Dhinakaran V., Ajith J., Fahmidha A.F., Jagadeesha T., Sathish T., Stalin B. Wire Arc Addi tive Manufacturing (WAAM) process of nickel based superalloys - a review // Materials Today : Proceedings. 2020. V. 21. P. 920-925.
Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications / Ott E. et al. (ed.). Cham.: Springer, 2018.
Wong K.V., Hernandez A. A review of additive manufacturing // International Scholarly Research Notices. 2012. V. 2012. Art. 208760. doi: 10.5402/2012/208760
Raj B.A., Jappes J.T., Khan M.A., Dillibabu V., Brintha N.C. Direct metal laser sintered (DMLS) process to develop Inconel 718 alloy for turbine engine components // Optik. 2020. V. 202. Art. 163735. doi: 10.1016/j.ij leo.2019.163735
Schilke P. W., Foster A.D., Pepe J.J. Advanced gas turbine materials and coatings. New-York : GE Energy Schenectady, 1991.
Sharma P., Chakradhar D., Narendranath S. Evaluation of WEDM performance characteris tics of Inconel 706 for turbine disk application // Materials & Design. 2015. V. 88. P. 558566.
Farid A.A., Sharif S., Namazi H. Effect of machining parameters and cutting edge geometry on surface integrity when drilling and hole making in Inconel 718 // SAE International Journal of Materials and Manufacturing. 2009. V. 2 (1). P. 564-569.
Ngo T.D., Kashani G., Nguyen K., Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges // Composites Part B: Engineering. 2018. V. 143. P. 172-196. doi: 10.1016/j.compositesb.2018.02.012
Mazalov A., Shmatov D., Zelenina L., Platko D., Promakhov V., Vorozhtsov A., Schulz N. Researching the Properties of Samples Fabricated Using Selective Laser Melting from a High-Temperature Nickel-Based Alloy // Applied Sciences. 2021. V. 11 (4). Art. 1419. doi: 10.3390/app11041419
Rao H., Oleksak R.P., Favara K., Harooni A., Dutta B., Maurice D. Behavior of yttria-stabilized zirconia (YSZ) during laser direct energy deposition of an Inconel 625-YSZ cermet // Additive Manufacturing. 2020. V. 31. Art. 100932. doi: 10.1016/j.addma.2019.100932
Zhukov I.A., Kozulin A.A., Khrustalyov A.P., Matveev A.E., Platov V.V., Vorozhtsov A.B., Zhukova T. V., PromakhovV.V. The impact of particle reinforcement with AhO3, TiB2, and TiC and severe plastic deformation treatment on the combination of strength and electrical conductivity of pure aluminum // Metals. 2019. V. 9 (1). Art. 65. DOI: 10.3390/met9010065
Matveev A., Zhukov I., Ziatdinov M., Zhukov A. Planetary milling and self-propagating high-temperature synthesis of Al-TiB2 composites // Materials. 2020. V. 13 (5). Art. 1050. doi: 10.3390/ma13051050
Hashim J., Looney L., Hashmi M.S. Metal matrix composites: production by the stir casting method // Journal of materials processing technology. 1999. V. 92. P. 1-7. doi: 10.1016/S0924-0136(99)00118-1
Tjong S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties // Advanced engineering materials. 2007. V. 9 (8). P. 639-653. doi: 10.1002/adem.200700106.
Vorozhtsov S.A., Eskin D.G., Tamayo J., Vorozhtsov A.B., Promakhov V.V., Averin A.A., Khrustalyov A.P. The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites // Metallurgical and Materials Transactions A. 2015. V. 46 (7). P. 2870-2875. doi: 10.1007/s11661-015-2850-3
Rawal S.P. Metal-matrix composites for space applications // JOM. 2001. V. 53 (4). P. 14-17 DOI: 10.1007/s11837-001-0139-z
Wilson J.M., Shin Y.C. Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC // Surface and Coatings Technology. 2012. V. 207. P. 517-522. doi: 10.1016/j.surfcoat.2012.07.058
Ghadami F., Sohi M.H., Ghadami S. Effect of TIG surface melting on structure and wear properties of air plasma-sprayed WC-Co coatings // Surface and Coatings Technology. 2015. V. 261. P. 108-113. doi: 10.1016/j.surfcoat.2014.11.050
Nurminen J., Nakki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding // International Journal of Refractory Metals and Hard Materials. 2009. V. 27 (2). P. 472-478. doi: 10.1016/j.ijrmhm.2008.10.008
Gu D., Hong C., Jia Q., Dou D., Gasser A., Weisheit A., Kelbassa I., Zhong M., Poprawe R.Combined strengthening of multi-phase and graded interface in laser additive manufactured TiC/Inconel 718 composites // Journal of Physics D: Applied Physics. 2013. V. 47 (4). Art. 045309. doi: 10.1088/0022-3727/47/4/045309
Hong C., Gu D., Dai D., Alkhayat M., Urban W., Yuan P., Cao S., Gasser A., Weisheit A., Kelbassa I., Zhang M., Poprawe R. Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: Tailored microstructures and enhanced performance // Materials Science and Engineering: A. 2015. V. 635. P. 118-128. doi: 10.1016/j.msea.2015.03.043
Matveev A., Promakhov V., Schulz N., Vorozhtsov A. Synthesis of Metal Matrix Composites Based on CrxNiy-TiN for Additive Technology // Materials. 2021. V. 11 (5). Art. 5914. doi: 10.3390/ma14205914
Promakhov V., Matveev A., Schulz N., Grigoriev M., Olisov A., Vprpzhtsov A., Zhukov A., Klimenko A. High-Temperature Synthesis of Metal-Matrix Composites (Ni-Ti)-TiB2 // Applied Sciences. 2021. V. 11 (5). Art. 2426. doi: 10.3390/app11052426
Амосов А.П. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. М. : Машиностроение-1,2007. 567 с.
Promakhov V., Zhukov A., Ziatdinov M., Zhukov I., Schulz N., Kovalchuk S., Dubcova Y., Korsmik R., Klimova-Korsmik O., Turichin G., Perminov A. Inconel 625/TiB2 Metal Matrix Composites by Direct Laser Deposition // Metals. 2019. V. 9 (2). 141. doi: doi.org/10.3390/met9020141
Lorusso M., Aversa A., Manfredi D., Calignano F., Ambrosio E.P., Ugues D., PaveseM. Tribological behavior of aluminum alloy AlSi10Mg-TiB2 composites produced by direct metal laser sintering (DMLS) // Journal of Materials Engineering and Performance. 2016. V. 25. P. 3152-3190. doi: 10.1007/s11665-016-2190-5
Li W., Yang Y., Liu J., Zhan Y., Li M., Wen S., Wei Q., Yan C., Shi Y. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting // Acta Materialia. 2017. V. 136. P. 90-104. doi: 10.1016/j.actamat.2017.07.003
Chen L., Sun Y., Li L., Ren Y., Ren X. In situ TiC/Inconel 625 nanocomposites fabricated by selective laser melting: Densification behavior, microstructure evolution, and wear properties // Applied Surface Science. 2020. V. 518. Art. 145981. doi: 10.1016/j.apsusc.2020.145981