Sloshing of a liquid fuel in toroidal tanks with account for capillary effect
A numerical approach is proposed to solve the linear sloshing problem of an incompressible inviscid liquid with account for surface tension effects, which are predominant in the low-gravity environment. A variational formulation is derived by the linearization of motion equations for the liquid near its initial equilibrium state with consideration of a pressure drop on the free surface and a free-end boundary condition on the contact line. The continuous problem domain is discretized by the finite element method. After discretization, the classical generalized eigenvalue problem is obtained, whose solutions are the natural frequencies and mode shapes. Several examples show the effect of the Bond number and the fluid-filled volume on the liquid behavior in toroidal tanks. A comparison of numerical results with experimental measurements under ground conditions reveals that under microgravity condition, the surface tension force and the boundary condition on the contact line play an important role when determining the natural frequencies and mode shapes of the liquid sloshing. Each fluid-filled volume has its own characteristic Bond number, above which the natural frequencies approximate to the experimental values obtained under ground conditions. The presented results can be used in the coupling dynamic analysis of a spacecraft with propellant tanks. The author is grateful to the supervisor associate professor A.N. Tem-nov for help in formulating the problem and discussion of the results of the work.
Keywords
microgravity,
surface tension force,
contact line,
natural frequency and mode shapes,
toroidal tank,
finite element methodAuthors
Yu Zhao Kai | Bauman Moscow State Technical University | yuzhaokai933@mail.ru |
Всего: 1
References
Abramson H.N. The Dynamic Behavior of liquids in Moving Containers. NASA SP-106. 1966. 467 p.
Моисеев Н.Н., Петров А.А. Численные методы расчета собственных частот колебаний ограниченного объёма жидкости. М. : Вычислит. центр АН СССР, 1966. 272 с.
Микишев Г.Н. Экспериментальные методы в динамике космических аппаратов. М. : Машиностроение, 1978. 247 с.
Мышкис А.Д., Бабский В.Г., Жуков М.Ю., Копачевский Н.Д., Слобожанин Л.А., Тюпцов А.Д. Методы решения задачи гидромеханики для условий невесомости. Киев : Наукова думка, 1992. 592 с.
Dodge F.T. The new “Dynamic behavior of liquids in moving containers”. Southwest Research Inst., 2000. 195 p.
Полевиков В.К. О методах численного моделирования равновесных капиллярных по верхностей // Дифференциальные уравнения. 1999. T. 35, № 7. C. 975-981.
Yang D., Yue B., Zhu L., Song X. Solving shapes of hydrostatic surface in rectangular and revolving symmetrical tanks under microgravity using shooting method // Chinese Journal of Space Science. 2012. V. 32, No. 1. P. 85-91. doi: 10.11728/cjss2012.01.085
Dodge F.T., Garza L.R. Experimental and Theoretical Studies of Liquid Sloshing at Simulated Low Gravity // ASME. J. Appl. Mech. 1967. V. 34, No. 3. P. 555-562. doi:_10.1115/1.3607743
Wang Z., Deng Z. Sloshing of Liquid in Spherical Tank at Low-gravity Environments // Chinese Journal of Space Science. 1985. V. 5, No. 4. P. 294-302.
Wang Z., Deng Z. On the Sloshing of Liquid in a Partially Filled Rectangular Tank under Low-gravity Condition // Journal of Tsinghua University. 1986. V. 26, No. 3. P. 1-9.
Utsumi M. Low-gravity propellant slosh analysis using spherical coordinates // Journal of Fluids and Structures. 1998. V. 12, No. 1. P. 57-83. doi: 10.1006/jfls.1997.0125
Chu W. Low-Gravity Fuel Sloshing in an Arbitrary Axisymmetric Rigid Tank // ASME. J. Appl. Mech. 1970. V. 37, No. 3. P. 828-837. doi: 10.1115/1.3408616
Dodge F.T., Green S.T., Kana D.D. Fluid management technology: liquid slosh dynamics and control. NASA CR-189107. 1991. 198 p.
Wang W., Li J., Wang T. Modal analysis of liquid sloshing with different contact line boundary conditions using FEM // Journal of Sound and Vibration. 2008. V. 317, is. 3-5. P. 739-759. doi: 10.1016/j.jsv.2008.03.070
Юй Чжаокай, Темнов А.Н. Исследование равновесной свободной поверхности капиллярной жидкости в тороидальном сосуде // Инженерный журнал: наука и инновации. 2021. Вып. 3. С. 1-11. doi: 10.18698/2308-6033-2021-3-2060
Юй Чжаокай, Темнов А.Н. Равновесие и колебания свободной поверхности жидкого топлива в коаксиально-цилиндрических сосудах в условиях микрогравитации // Инженерный журнал: наука и инновации. 2021. Вып. 8. С. 1-15. doi: 10.18698/2308-6033-2021-8-2099
Киричевский Р.В., Скринникова А.В. Влияние аппроксимирующих функций при построении матрицы жёсткости конечного элемента на скорость сходимости метода конечных элементов // Вестник Томского государственного университета. Математика и механика. 2019. № 57. С. 26-38. doi: 10.17223/19988621/57/2
Bathe K.J. Finite element procedures. 2nd ed. Waterton, 2014. 1065 p.
Guyan R.J. Reduction of stiffness and mass matrices // AIAA Journal. 1965. V. 3, No. 2. P. 380-380. doi: 10.2514/3.2874
Symons E.P. Zero-gravity equilibrium configuration of liquid-vapor interface in toroidal tanks. NASA TN D-6076. 1970. 24 p.
Meserole J.S., Fortini A. Slosh dynamics in a toroidal tank // Journal of Spacecraft and Rockets. 1987. V. 24, No. 6. P. 523-531. doi: 10.2514/3.25948