Exact solution of the fundamental equation of acoustics for a pressure wave developing in two directions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 79. DOI: 10.17223/19988621/79/1

Exact solution of the fundamental equation of acoustics for a pressure wave developing in two directions

The authors proceed from the hyperbolic equation for acoustic pressure. Using the integral Fourier transform along the axial coordinate, an equation in partial derivatives for the kernel of this transformation is found. This equation contains only one spatial coordinate and time. Applying the integral Laplace transform in time to the last equation, we obtain an ordinary differential equation with respect to the radial coordinate for the corresponding image. It turns out that the solution of the last equation is the well-known Macdonald function. For this function, it was possible to find the original image according to Laplace. All this made it possible to write an integral formula for the pressure in a sound wave. If the function of the initial pressure distribution along the pipe axis is taken in the form of a Gaussian impulse, then the integrals included in the representation of the desired solution are taken explicitly. As a result, we obtain an explicit compact formula for the acoustic pressure distribution in the axisymmetric case. It is convenient to use this formula to analyze the distribution of sound disturbances both along the pipe axis and in the radial direction. Therefore, the results are presented as isobars in the (z, r) plane corresponding to different times.

Download file
Counter downloads: 52

Keywords

wave equation for pressure, non-periodic sound wave, operational calculus, exact solution

Authors

NameOrganizationE-mail
Borodin Vladislav I.Gazprom transgaz Tomsk LLCv.borodin@gtt.gazprom.ru
Lun-Fu Alexandr V.Gazprom transgaz Tomsk LLCa.lun-fu@gtt.gazprom.ru
Bubenchikov Mikhail A.Tomsk State Universitymichael121@mail.ru
Bubenchikov Alexey M.Tomsk State Universitybubenchikov_am@mail.ru
Mamontov Dmitriy V.Tomsk State Universityorevaore@mail.ru
Всего: 5

References

Demir A., Qinar Yanaz О. Propagation of sound in an infinite two-part duct carrying mean flow inserted axially into a larger infinite duct with wall impedance discontinuity // Journal of Applied Mathematics and Mechanics. 2009. V. 89. P. 454-465. doi: 10.1002/zamm.200800145
Peake N., Abrahams I.D. Sound radiation from a semi-infinite lined duct // Wave Motion. 2019. V. 92. Art. 102407. doi: 10.1016/j.wavemoti.2019.102407
Tiryakioglu B. Mode Matching Analysis of Sound Waves in an Infinite Pipe with Perforated Screen // Acoustical Physics. 2021. V. 66. P. 580-586. doi: 10.1134/S1063771020060135
Gabard G., Astley R.J. Theoretical model for sound radiation from annular jet pipes: Far- and near-field solutions // Journal of Fluid Mechanics. 2006. V. 549. P. 315-341.
Veitch B., Peake N. Acoustic propagation and scattering in the exhaust flow from coaxial cylinders // Journal of Fluid Mechanics. 2008. V. 613. P. 275-307.
Lun-Fu A.V., Bubenchikov M.A., Bubenchikov A.M, Mamontov D.V. Passage of Monochro matic Sound Through a Gas Pipeline Wall // Acoustics Australia. 2021. V. 50. P. 119-126. doi: 10.1007/s40857-021-00255-0
Градштейн И.С., Рыжик Н.М. Таблицы интегралов, сумм, рядов и произведений. М. : Физматгиз, 1963. 1100 с.
Диткин В.А., Прудников А.П. Справочник по операционному исчислению. М. : Высшая школа, 1965. 466 с.
 Exact solution of the fundamental equation of acoustics for a pressure wave developing in two directions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 79. DOI: 10.17223/19988621/79/1

Exact solution of the fundamental equation of acoustics for a pressure wave developing in two directions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 79. DOI: 10.17223/19988621/79/1

Download full-text version
Counter downloads: 190