Uniqueness of recovery of the Sturm-Liouville operator with a spectral parameter quadratically entering the boundary condition
The work is devoted to the study of the inverse problem for the Sturm-Liouville operator with a real square-integrable potential. The boundary conditions are non-separated. One of these boundary conditions includes a quadratic function of the spectral parameter. A uniqueness theorem is proved and an algorithm for solving the inverse problem is constructed. As spectral data, we use the spectrum of the considered boundary value problem, the constant term of the quadratic function of the spectral parameter included in the boundary condition, and some special sequence of signs. From these spectral data, the characteristic function of the boundary value problem is first reconstructed in the form of an infinite product and the parameters of the boundary conditions, and then the problem is reduced to the inverse problem of reconstructing the potential of the Sturm-Liouville operator from the spectra of two boundary value problems with separated boundary conditions. The results of the article can be used for solving various versions of inverse problems of spectral analysis for differential operators, as well as for integrating some nonlinear equations of mathematical physics.
Keywords
Sturm-Liouville operator,
nonseparated boundary conditions,
inverse problem,
uniqueness theorem,
solution algorithmAuthors
Mammadova Leyla I. | Azerbaijan State Oil and Industry University | leylaimae@yahoo.com |
Nabiev Ibrahim M. | Baku State University; Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan; Khazar University | nabievim@yahoo.com |
Всего: 2
References
Коллатц Л. Задачи на собственные значения : (с техническими приложениями). М. : Наука, 1968. 504 с.
Тихонов А.Н., Самарский А.А. Уравнения математической физики. М. : Изд-во Моск. гос. ун-та, 1999. 799 с.
Ахтямов А.М. Теория идентификации краевых условий и ее приложения. М. : Физматлит, 2009. 272 с.
Panakhov E.S., Koyunbakan H., Ic U. Reconstruction formula for the potential function of Sturm-Liouville problem with eigenparameter boundary condition // Inverse Probl. Sci. and Eng. 2010. V. 18 (1). P. 173-180. doi: 10.1080/17415970903234976
Эткин А.Е., Эткина Г.П. О единственности решения обратной задачи Штурма-Лиувилля со спектральным параметром, рационально входящим в граничное условие // Известия Иркутского государственного университета. Сер. Математика. 2011. Т. 4, № 3. С. 158170. URL: http://mi.mathnet.ru/iigum126
Guldu Y., Amirov R.Kh., Topsakal N. On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions // Украинский математический журнал. 2012. Т. 64, № 12. С. 1610-1629.
Moller M., Pivovarchik V. Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications. Cham : Birkhauser, 2015. 412 p. doi: 10.1007/978-3-319-17070-1
Guliyev N.J. Schrodinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter //j. Math. Phys. 2019. V. 60 (6). Art. 063501. P. 1-23. doi: 10.1063/1.5048692
Guliyev N.J. On two-spectra inverse problems // Proc. American Math. Soc. 2020. V. 148 (10). P. 4491-4502. doi: 10.1090/proc/15155
Guliyev N.J. Essentially isospectral transformations and their applications // Annali di Matematica Pura ed Applicata. 2020. V. 199 (4). P. 1621-1648. doi: 10.1007/s102 31-019-00934-w
Ala V., Mamedov Kh.R. On a discontinuous Sturm-Liouville problem with eigenvalue parameter in the boundary conditions // Dynamic Systems and Applications. 2020. V. 29. P. 182-191. URL: http://www.dynamicpublishers.com/DSA/dsa2020pdf/11-DSA-20-A-11.pdf
Yang Ch.-F., Bondarenko N.P., Xu X-Ch. An inverse problem for the Sturm Liouville pencil with arbitrary entire functions in the boundary condition // Inverse Problems and Imaging. 2020. V. 14 (1). P. 153-169. doi: 10.3934/ipi.2019068
Садовничий В.А., Султанаев Я.Т., Ахтямов А.М. Обратная задача для пучка операторов с нераспадающимися краевыми условиями // Доклады РАН. 2009. Т. 425, № 1. С. 31-33. URL: https://elibrary.ru/item.asp?id=11714202
Yurko V.A. Inverse problems for nonselfadjoint quasi-periodic differential pencils // Anal. Math. Phys. 2012. V. 2. P. 215-230. doi: 10.1007/s13324-012-0030-9
Freiling G., Yurko V. Recovering nonselfadjoint differential pencils with nonseparated boundary conditions // Applicable Anal. 2015. V. 94 (8). P. 1649-1661. doi: 10.1080/00036811.2014.940918
Ibadzadeh Ch.G., Mammadova L.I., Nabiev I.M. Inverse problem of spectral analysis for diffusion operator with nonseparated boundary conditions and spectral parameter in boundary condition // Azerbaijan Journal of Mathematics. 2019. V. 9 (1). P. 171-189. URL: http://azjm.org/volumes/0901/pdf/!1.pdf
Mammadova L.I., Nabiev I.M., Rzayeva Ch.H. Uniqueness of the solution of the inverse problem for differential operator with semiseparated boundary conditions // Baku Mathematical Journal. 2022. V. 1 (1). P. 47-52. doi: 10.32010/j.bmj.2022.05
Nabiev I.M. Reconstruction of the differential operator with spectral parameter in the boundary condition // Mediterr. Journal of Mathematics. 2022. V. 19 (3). Art. 124. P. 1-14. doi: 10.1007/s00009-022-02053-y
Yurko V.A. Inverse spectral problems for differential operators with non-separated boundary conditions // Journal of Inverse and Ill-posed Problems. 2020. V. 28 (4). P. 567-616. doi: 10.1515/jiip-2019-0044
Марченко В.А. Операторы Штурма-Лиувилля и их приложения. Киев : Наукова думка, 1977. 332 с.
Nabiev I.M. Determination of the diffusion operator on an interval // Colloquium Mathematicum. 2014. V. 134 (2). P. 165-178. doi: 10.4064/cm134-2-2
Юрко В.А. Об обратной периодической задаче для центрально-симметричных потенциалов // Известия Саратовского университета. Новая серия. Сер. Математика. Механика. Информатика. 2016. Т. 16, вып. 1. С. 68-75. doi: 10.18500/1816-9791-2016-16-1-68-75
Гусейнов И.М., Набиев И.М. Решение одного класса обратных краевых задач Штурма-Лиувилля // Математический сборник. 1995. Т. 186, № 5. С. 35-48. doi: 10.1070/ SM1995v186n05ABEH000035
Макин А.С. Обратная задача для оператора Штурма-Лиувилля с регулярными краевыми условиями // Доклады РАН. 2006. Т. 408, № 3. С. 305-308. URL: https://www.elibrary.ru/item.asp?id=9226960
Левин Б.Я. Целые функции. М. : Изд-во Моск. гос. ун-та, 1971. 124 с.
Маммадова Л.И., Набиев И.М. Спектральные свойства оператора Штурма-Лиувилля со спектральным параметром, квадратично входящим в граничное условие // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2020. Т. 30, вып. 2. С. 237-248. doi: 10.35634/vm200207