The limit distribution of the perimeter of a convex hull generated by a Poisson point process in a convex polygon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 79. DOI: 10.17223/19988621/79/4

The limit distribution of the perimeter of a convex hull generated by a Poisson point process in a convex polygon

In this paper, we study various functionals of convex hulls generated by the realization of a homogeneous Poisson point process in a polygon on a plane. The convex hull is a generalization of the extreme elements of the sample when estimating the carrier of the distribution; and in the multidimensional case, as an estimate of the carrier of the distribution, it retains many properties of one-dimensional estimates, such as consistency, asymptotic unbiasedness, and sufficiency. Works on the study of random convex hulls in polygons and various functionals of them are usually referred to the field of probabilistic geometry. It should be noted that studying the properties of even the simplest functionals of convex hulls, such as the number of vertices or the area, is not an easy problem (see, for example, [1-4]). This also explains the fact that before the appearance of the work of P. Groeneboom [6], the main progress in this field was achieved only in the study of the properties of the mean values of such functionals. In [6], he succeeded in proving the central limit theorem for the number of vertices of a convex hull in the case when the support of the original uniform distribution is either a convex polygon or an ellipse. The main result of this paper consists in proving that the difference between the perimeters of the distribution carrier and the convex hull converges in probability to a random variable that has a distribution different from normal, and it is asymptotically independent of the number of vertices and the area of the convex hull.

Download file
Counter downloads: 28

Keywords

convex hull, Poisson point process, functionals of convex hulls, realization of a point process

Authors

NameOrganizationE-mail
Khamdamov Isakjan M.National University of Uzbekistan named after Mirzo Ulugbekkhamdamov.isakjan@gmail.com
Chay Zoya S.Tashkent University of Information Technologieschay1526@mail.ru
Sharipova Lola D.Tashkent State Transport Universitylolaxon@gmail.com
Всего: 3

References

Нагаев А.В., Хамдамов И.М. О роли экстремальных слагаемых в сумме случайных ве личин // Теория вероятностей и ее применения. 2002. Т. 47, вып. 3. С. 575-583.
Carnal H. Die konvexe Hulle von n rotations symmetrisch verteilte n Punkten // Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. 1970. V. 15. P. 168-176.
Efron B. The convex hull of a random set of points // Biometrika. 1965. V. 52. P. 331-343.
Schneider R. Random approximation of convex sets : Preprint Mathematical Institute. Freiburg im Breisgau : Albert-Ludwigs University, 1987. 180 S.
Groeneboom P. Limit theorems for convex hulls // Probab. Theory Related Fields. 1988. V. 79. P. 327-368.
Formanov Sh.K., Khamdamov I.M. On joint probability distribution of the number of vertices and area of the convex hulls generated by a Poisson point process // Statistics and Probability Letters. 2021. V. 169. Art. 108966. P. 1-7.
Хамдамов И.М. Предельное распределение периметра выпуклой оболочки, порожден ной Пуассоновским точечным процессом в конусе // Бюллетень Института математики (АН РУз). 2021. Т. 4, № 2. C. 95-98.
Khamdamov I.M., Chay Z.S. Joint distribution of the number of vertices and the area of convex hulls generated by a uniform distribution in a convex polygon // Journal of Siberian Federal University. Mathematics & Physics. 2021. V. 14 (2). P. 232-243.
Nagaev A.V. Some properties of convex hulls generated by homogeneous Poisson point pro cesses in an unbounded convex domain // Ann. Inst. Statist. Math. 1995. V. 47. P. 21-29.
Петров В.В. Предельные теоремы для сумм независимых случайных величин. М. : Наука, 1987. 320 с.
 The limit distribution of the perimeter of a convex hull generated by a Poisson point process in a convex polygon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 79. DOI: 10.17223/19988621/79/4

The limit distribution of the perimeter of a convex hull generated by a Poisson point process in a convex polygon | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 79. DOI: 10.17223/19988621/79/4

Download full-text version
Counter downloads: 190