Simulation of the stress state in barriers made of anisotropic materials
To study the properties of anisotropic materials, a mathematical model is proposed that accounts for the anisotropy of elastic and plastic properties, as well as the anisotropy of “thermal” and “cold” components of pressure. The model is applied in a threedimensional simulation of the deformation of an HCP-single-crystal barrier under impact loading by an aluminum impactor. The numerical simulation results are obtained using the dynamic finite element method with a difference scheme modified to account for the anisotropy of “cold” and “thermal” pressure components. To simulate the anisotropy of the stress deviator in the region of elastic deformations, generalized Hooke's law is used, while in the region of plastic deformations, the Mises-Hill plasticity function (Hill48) is used with account for the anisotropy of elastic properties and anisotropy of the Gruneisen coefficient. The experimentally and numerically obtained velocity profiles of the back surfaces of single-crystal zinc barriers during the spall fracture are compared with each other. When the impact loading direction coincides with [0001] axis, the elastic precursor is not observed on the velocity profile calculated numerically, which is the same for the one derived experimentally. This effect may be explained only with the use of anisotropic pressur.
Keywords
Gruneisen coefficient,
anisotropy of properties,
equation of state,
single crystal,
dynamic loadingAuthors
Krivosheina Marina N. | Institute of Strength Physics and Materials Science Siberian Branch of the Russian Academy of Sciences; Tomsk State University | marina@ispms.ru |
Всего: 1
References
Bogach A.A., Kanel’ G.I., Razorenov S.V., Utkin A.V. Resistance of zinc crystals to shock deformation and fracture at elevated temperatures // Phys. Solid State. 1998. V. 40 (10). P. 1676-1680. doi: 10.1134/1.1130633
Безручко Г.С., Канель Г.И., Разоренов С.В. О пределе текучести монокристаллов цинка при одномерном сжатии в плоской ударной волне // Журнал технической физики. 2005. Т. 75, вып. 5. С. 92-95. doi: 10.1134/1.1927218
Безручко Г.С., Канель Г.И., Разоренов С.В. Сжимаемость монокристаллов цинка в обла сти положительных и отрицательных давлений // Теплофизика высоких температур. 2004. Т. 42, № 2. С. 262-268. doi: 10.1023/B:HITE. 0000026158.05820.1B
Абдуллаев Н.А. Параметры Грюнайзена в слоистых кристаллах // Физика твердого тела. 2001. Т 43, вып. 4. С. 697-700.
Новикова С.И. Тепловое расширение твердых тел. М. : Наука, 1974. 292 с.
Беломестных В.Н., Теслева Е.П., Соболева Э.Г. Максимальный параметр Грюнайзена при полиморфных превращениях в кристаллах // Журнал технической физики 2009. Т. 79, вып. 2. С. 153-154. doi: 10.1134/S1063784209020273
Коларов Д., Балтов А., Бончева Н. Механика пластических сред. М. : Мир, 1974. 304 с.
Cairns A.B., Goodwin A.L. Negative linear compressibility // Physical Chemistry Chemical Physics. 2015. V. 17 (32). P. 20449-21020. doi: 10.1039/c5cp004042j
Vignjevic R., Djordjevic N., Panov V. Modelling of Dynamic Behaviour of Orthotropic Metals Including Damage and Failure // Int. J. Plasticity. 2012. V. 38. P. 47-85. doi: 10.1016/j.ijplas.2012.04.006
Mason W.P. Physical Acoustics: Principles and methods. New York-London : Academic Press, , 1965. V. III, pt. B: Lattice Dynamics. xix, 336 р.
Седов Л.И. Механика сплошных сред. М. : Наука, 1976. Т. 2. 574 с.
Krivosheina M.N., Tuch Е.V., Kobenko S.V. Simulation of the Crack Distribution at the “Viscous” of the Destruction of the HCP-Single Crystals in the Plane (1010) // AIP Conference Proceedings. 2018. V. 2051. Art. 020153. doi: 10.1063/1.5083396
Wilkins M.L.Computer Simulation of Dynamic Phenomena. Springer Verlag, 1999. 247 p.
Anderson Ch.E., Cox P.A., Johnson G.R., Maudlin P.J. A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer program-II // Computational Mechanics. 1994. V. 15. P. 201-223. doi: 10.1007/BF00375030
Johnson J.N. Dynamic fracture and spallation in ductile solids //j. Appl. Phys. 1981. V. 52 (4). P. 2812-2825.