A numerical study of the effect of nonisothermality on the power-law fluid flow characteristics in a sudden pipe expansion
In this paper, a steady laminar non-isothermal flow of a power-law fluid in an axisymmetric sudden pipe expansion is numerically simulated. The rheological behavior of the fluid is described by the modified Ostwald-de Waele law; the apparent viscosity is an exponential function of temperature. The equations are written in terms of dimensionless stream function - vortex - temperature. No-slip conditions and zero temperature are used on the solid wall. At the inlet boundary, the velocity and temperature profiles correspond to a one-dimensional steady non-isothermal flow of the considered fluid. “Soft” boundary conditions are assigned at the outlet boundary. The formulated problem is solved using the finite-difference method. The structure of the flow through a sudden pipe expansion is shown to include one- and two-dimensional flow zones with a recirculation region occurring in the inner corner vicinity. The variation in the two-dimensional flow zone length is analyzed with respect to a power-law index and dimensionless criteria of the problem. Distributions of the velocity, temperature, and apparent viscosity are presented at various Peclet and Reynolds numbers for dilatant and pseudoplastic fluids.
Keywords
non-isothermal flow,
Ostwald-de Waale model,
power-law fluid,
axisymmetric flow,
expansion,
circulation zone,
Reynolds number,
Peclet numberAuthors
Mamazova Dilara A. | Tomsk State University | mamazova.dilara@mail.ru |
Ryltseva Kira E. | Tomsk State University | kiraworkst@gmail.com |
Shrager Gennady R. | Tomsk State University | shg@ftf.tsu.ru |
Всего: 3
References
Feuerstein I.A., Pike G.K., Round G.F. Flow in an abrupt expansion as a model for biological mass transfer experiments // Journal of Biomechanics. 1975. V. 8 (1). P. 41-51. doi: 10.1016/0021-9290(75 )90041 -x
Hammad K.J., Otugen M.V., Arik E.B. A PIV study of the laminar axisymmetric sudden expan sion flow // Experiments in Fluids. 1999. V. 26 (3). P. 266-272. doi: 10.1007/s003480050288
Halmos A.L., Boger D.V. The behavior of a power-law fluid flowing through a sudden expan sion. Part II. Experimental verification // AIChE Journal. 1975. V. 21 (3). P. 550-553. doi: 10.1002/aic.690210317
Furuichi N., Takeda Y., Kumada M. Spatial structure of the flow through an axisymmetric sudden expansion // Experiments in Fluids. 2003. V. 34 (5). P. 643-650. doi: 10.1007/s00348-003-0612-2
Perera M.G.N., Walters K. Long range memory effects in flows involving abrupt changes in geometry // Journal of Non-Newtonian Fluid Mechanics. 1977. V. 2 (2). P. 191-204. doi: 10.1016/0377-0257(77)80043-8
Bell B.C., Surana K.S. p-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow // International Journal for Numerical Methods in Fluids. 1994. V. 18 (2). P. 127-162. doi: 10.1002/fld. 1650180202
Ternik P., Marn J., Zunic Z. Non-Newtonian fluid flow through a planar symmetric expansion: Shear-thickening fluids // Journal of Non-Newtonian Fluid Mechanics. 2006. V. 135 (2-3). P. 136-148. doi: 10.1016/j.jnnfm.2006.01.003
Back L.H., Roschke E.J. Shear-Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion // Journal of Applied Mechanics. 1972. V. 39 (3). P. 677-681. doi: 10.1115/1.3422772
Mullin T., Seddon J.R.T., Mantle M.D., Sederman A.J. Bifurcation phenomena in the flow through a sudden expansion in a circular pipe // Physics of Fluids. 2009. V. 21 (1). Art. 014110. doi: 10.1063/1.3065482
Cantwell C.D., Barkley D., Blackburn H.M. Transient growth analysis of flow through a sudden expansion in a circular pipe // Physics of Fluids. 2010. V. 22 (3). Art. 034101. doi: 10.1063/1.3313931
Sanmiguel-Rojas E., del Pino C., Gutierrez-Montes C. Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion // Physics of Fluids. 2010. V. 22 (7). Art. 071702. doi: 10.1063/1.3458889
Sanmiguel-Rojas E., Mullin T. Finite-amplitude solutions in the flow through a sudden expansion in a circular pipe // Journal of Fluid Mechanics. 2011. V. 691. P. 201-213. doi: 10.1017/jfm.2011.469
Macagno E.O., Hung T.-K.Computational and experimental study of a captive annular eddy // Journal of Fluid Mechanics. 1967. V. 28 (01). P. 43-64. doi: 10.1017/s0022112067001892
Fletcher D.F., Maskell S.J., Patrick M.A. Heat and mass transfer computations for laminar flow in an axisymmetric sudden expansion // Computers & Fluids. 1985. V. 13 (2). P. 207221. doi: 10.1016/0045-7930(85)90026-x
Khodaparast S., Borhani N., Thome J.R. Sudden expansions in circular microchannels: flow dynamics and pressure drop // Microfluidics and Nanofluidics. 2014. V. 17 (3). P. 561-572. doi: 10.1007/s10404-013-1321-7
Мамазова Д.А., Рыльцева К.Е., Шрагер Г.Р. Структура потока и кинематика течения неньютоновской жидкости в трубе с внезапным расширением // Вестник Томского государственного университета. Математика и механика. 2021. № 74. С. 113-126. doi: 10.17223/19988621/74/12
Mirzaei Nejad M., Javaherdeh K. Numerical simulation of power-law fluids flow and heat transfer in a parallel-plate channel with transverse rectangular cavities // Case Studies in Thermal Engineering. 2014. V. 3. P. 68-78. doi: 10.1016/j.csite.2014.03.004
Vaz M., Zdanski P.S.B. A fully implicit finite difference scheme for velocity and temperature coupled solutions of polymer melt flow // Communications in Numerical Methods in Engineering. 2006. V. 23 (4). P. 285-294. doi: 10.1002/cnm.902
Zdanski P.S.B., Vaz M. Polymer melt flow in plane channels: Effects of the viscous dissipation and axial heat conduction // Numerical Heat Transfer, Part A: Applications. 2006. V. 49 (2). P. 159-174. doi: 10.1080/10407780500302059
Zdanski P.S.B., Vaz M. Polymer melt flow in plane channels: Hydrodynamic and thermal boundary layers // Journal of Materials Processing Technology. 2006. V. 179 (1-3). P. 207211. doi: 10.1016/j.jmatprotec.2006.03.087
Янков В.И., Глот И.О., Труфанова Н.М., Шакиров Н.В. Течение полимеров в отверстиях фильер. Теория, расчет, практика. М. ; Ижевск : Регулярная и хаотическая динамика, 2010. 368 c.