Rotation of supermolecules around an intermediate axis of inertia | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/5

Rotation of supermolecules around an intermediate axis of inertia

In the problem of the inertial rotation of molecular objects, only kinematic relations for the nodes of the molecular structure are evolutionary. These relations determine the position of the atoms of a supermolecule depending on the instantaneous angular velocity of the object in inertial motion. All other relations are algebraic, since they are integrals of the equations of rotational motion. The latter relations include both the projections of the angular velocities of the molecule and the instantaneous coordinates of the atoms. Within the framework of the fourth-order Runge-Kutta scheme, each time step is divided into four positions. Initially, in each of these positions, new values of coordinates are determined or the initial coordinates of atoms at the first position of the first time step are used. After the coordinates are found, in the same position, the projections of angular velocities of the supermolecule are obtained from conservation relations for the projections of the angular momentum. Based on the values of the coordinates in four positions, the coordinates on a new time layer are recalculated. After that, solving the system of three linear algebraic equations according to Cramer's rule, the projections of angular velocities at a new time step are determined. Then, the cycle is repeated. During the inertial rotation, the kinetic energy of an object is conserved. Verification of the calculated kinetic energy shows that the result is obtained with machine accuracy. Further, the constructed calculation scheme is used to study the Louis Poinsot instability. The full range of the considered instability for a fullerene C100 (C1 symmetry) is presented.

Download file
Counter downloads: 24

Keywords

numerical modeling, molecular dynamics, fullerenes

Authors

NameOrganizationE-mail
Bubenchikov Mikhail A.Tomsk State Universitymichael121@mail.ru
Mamontov Dmitriy V.Tomsk State Universityorevaore@mail.ru
Azheev Sergey A.Tomsk State Universitysazheev72@yandex.ru
Azheev Aleksandr A.Tomsk State Universitysazheev@gmail.com
Всего: 4

References

Goldstein H. Classical Mechanics. 2nd ed. USA: Addison-Wesle, 1980. 638 р.
Бубенчиков М.А., Бубенчиков А.М., Мамонтов Д.В. Вращения и вибрации торов в моле кулярном комплексе C20@C80 // Вестник Томского государственного университета. Математика и механика. 2021. № 71. С. 35-48. doi: 10.17223/19988621/71/4
Бубенчиков М.А., Бубенчиков А.М., Мамонтов Д.В., Капарулин Д.С., Лун-Фу А.В. Вра щение торов в структуре жидкого кристалла // Вестник Томского государственного университета. Математика и механика. 2021. № 73. С. 42-49. doi: 10.17223/19988621/73/4
Bubenchikov A.M., Bubenchikov M.A., Mamontov D. V., Kaparulin D.S., Lun-Fu A. V. Dynamic state of columnar structures formed on the basis of carbon nanotori // Fullerenes, Nanotubes and Carbon Nanostructures. 2021. V. 29 (10). P. 1-7. doi: 10.1080/1536383X.2021.1908268
Lun-Fu A.V., Bubenchikov M.A., Bubenchikov A.M., Mamontov D.V., Borodin V.A.Interaction of molecular tori in columnar structures // Journal of Physics: Condensed Matter. 2021. V. 34 (12). doi: 10.1088/1361-648X/ac45b9
Hamilton R. W. On quaternions; or on a new system of imaginaries in Algebra // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1844. V. 25 (169). P. 489-495. doi: 10.1080/14786444408645047
Denis J.E., Sohail M. Singularity free algorithm for molecular dynamics simulation of rigid poly atomics // Molecular Physics. 1977. V. 34 (2). P. 327-331. doi: 10.1080/00268977700101761
Pawley G.S. Molecular dynamics simulation of the plastic phase; a model for SF6 // Molecular Physics. 1981. V. 43 (6). P. 1321-1330. doi: 10.1080/00268978100102091
Karney Ch. Quaternions in molecular modeling // Journal of Molecular Graphics & Modelling. 2007. V. 25. P. 595-604. doi: 10.1016/j.jmgm.2006.04.002
Miller T.F. III, Eleftheriou M., Pattnaik P., Ndirango A., Newns D. Symplectic quaternion scheme for biophysical molecular dynamics // The Journal of Chemical Physics. 2002. V. 116 (20). Р. 8649-8659. doi: 10.1063/1.1473654
Chen P-c., Hologne M., Walker O.Computing the Rotational Diffusion of Biomolecules via Molecular Dynamics Simulation and Quaternion Orientations // The Journal of Physical Chemistry B. 2017. V. 121 (8). P. 1812-1823. doi: 10.1021/acs.jpcb.6b11703
 Rotation of supermolecules around an intermediate axis of inertia | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/5

Rotation of supermolecules around an intermediate axis of inertia | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/5

Download full-text version
Counter downloads: 167