Estimation of the trajectory of meteoroids from Martian clusters | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/9

Estimation of the trajectory of meteoroids from Martian clusters

Recently, about 1200 fresh meteoroid impact sites were discovered on Mars, they are single craters and crater fields with crater sizes up to 50 m. Atmosphere density on the surface of Mars corresponds to about 30 km height of the Earth's atmosphere. Thus, scattering fields of craters on Mars allow one to study fragmentation details, which are hidden in terrestrial conditions. Previously, data on 77 Martian clusters were analyzed. To estimate the trajectory of meteoroids, the scattering ellipses were constructed. The ellipse size determines the angle of the meteoroid entry into the atmosphere and provides information about the height of destruction and the density of a space object. For more than 70% of clusters, the obtained azimuth estimations are within 20° of those determined by independent evaluations. For some clusters, the flight direction can be specified from crater ejecta on Martian HiRISE images. Estimations of azimuth angles for 42 clusters coincide with previous results obtained for 70% of clusters, while the data on the flight direction fit only for 30%. The discrepancy between different estimations of azimuth angles requires the use of other approaches. Continuing on the topic, this work presents numerical modeling of the flight and fragmentation of a meteoroid in the atmospheres of two planets, Mars and Earth. It is assumed that the simulation results will allow one to determine meteoroid parameters, in particular, the trajectory parameters. The main purpose of the presented work is to demonstrate the efficiency of the fragmentation model, its applicability to Martian clusters, and the difference in the scattering fields on the Earth and Mars: the atmospheric sorting effect is weak on Mars, and the scattering field is mainly dependent on fragmentation and the lateral spreading of fragments. The area of the simulated cluster is described with an accuracy of about 10%; the size of the maximum crater, with an accuracy of about 35%. The ratios of crater diameters to the maximum crater diameter for the model and real cluster are close to each other. In the future, it is planned to implement a series of numerical simulations with different initial data and to compare the results with real clusters on Mars, which have already been analyzed in previous works. The aim is to propose the advanced methods for determining the direction of the flight of meteoroids and the properties of impactors such as density and strength.

Download file
Counter downloads: 23

Keywords

craters, meteoroids, crater ejecta, fragmentation, numerical modeling

Authors

NameOrganizationE-mail
Podobnaya Elena D.Sadovsky Institute of Geosphere Dynamics Russian Academy of Scienceepodobnaya@gmail.com
Popova Olga P.Sadovsky Institute of Geosphere Dynamics Russian Academy of Scienceolga@idg.chph.ras.ru
Glazachev Dmitry O.Sadovsky Institute of Geosphere Dynamics Russian Academy of Scienceglazachevd@gmail.com
Всего: 3

References

Malin M.C., Edgett K.S., Posiolova L.V., McColley S.M., Noe Dobrea E.Z. Catalog of new impact sites on Mars formed May 1999-March 2006. San Diego, CA : Malin Space Science Systems. Inc., 2006.
Daubar I.J., McEwen A.S., Byrne S., Dundas C.M., Kennedy M., Ivanov B.A. The current Mar tian cratering rate // 41th Lunar and Planetary Science Conference. 2010. Abstract 1978.
Daubar I.J., Banks M.E., Schmerr N.C., Golombek M.P. Recently formed crater clusters on Mars // Journal of Geophysical Research 2019. V. 124 (4). P. 958-969. doi: 10.1029/2018JE005857
Daubar I.J., Dundas C.M., McEwen A.S., Gao A., Wexler D., Piqueux S., Collins G.S., Miljkovic K., Neidhart T., Eschenfelder J., Bart G.D., Wagstaff K.L., Doran G., Posiolova L., Malin M., Speth G., Susko D., Werynski A. New Craters on Mars: An Updated Catalog // Journal of Geophysical Research (Planets). 2022. V. 127 (7). e2021JE007145. doi: 10.1029/2021JE007145
Hartmann W.K., Daubar I.J., Popova O.P., Joseph Emily C.S. Martian cratering 12. Utilizing primary crater clusters to study crater populations and meteoroid properties // Meteoritics & Planetary Science. 2018. V. 53 (4). P. 672-686. doi: 10.1111/maps.13042
Ivanov B.A., Melosh H.J., McEwen A.S. and the HiRISE team. New small impact craters in high resolution HiRISE images - IV // 45th Lunar and Planetary Science Conference. 2014. Abstract 1812.
Подобная Е.Д., Попова О.П., Глазачев Д.О. Эллипсы рассеяния для недавно образован ных кластеров кратеров на Марсе // Динамические процессы в геосферах. 2020. № 12. С. 89-98. doi: 10.26006/IDG.2020.24.10.011
Podobnaya E.D., Popova O.P., Glazachev D.O. Trajectory estimation for fresh impacts on Mars // Contributions of the Astronomical Observatory Skalnate Pleso. 2021. V. 51 (3). P. 241-248. doi: 10.31577/caosp.2021.51.3.241
Shuvalov V. V. Ejecta deposition after oblique impacts: An influence of impact scale // Meteoritics & Planetary Science. 2011. V. 46 (11). P. 1713-1718. doi: 10.1111/j.1945-5100.2011.01259.x
Ivanov B.A., Melosh H.J., McEwen A.S., Team HiRISE. New small impact craters in high resolution HiRISE images - III // 41th Lunar and Planetary Science Conference. 2010. Abstract 2020.
Burleigh K.J., Melosh H.J., Tornabene L.L., Ivanov B.A., McEwen A.S., Daubar, I.J. Impact airblast triggers dust avalanches on Mars // Icarus. 2012. V. 217 (1). P. 194-201. doi: 10.1016/j.icarus.2011.10.026
Adolfsson L.G., Gustafson B.A., Murray C.D. The Martian atmosphere as a meteoroid detector // Icarus. 1996. V. 119 (1). P. 144-152. doi: 10.1006/icar.1996.0007
Baldwin B., Sheaffer Y. Ablation and breakup of large meteoroids during atmospheric entry // Journal of Geophysical Research. 1971. V. 76 (19). P. 4653-4668. doi: 10.1029/JA076i 019p04653
Passey Q.R., Melosh H.J. Effects of atmospheric breakup on crater field formation // Icarus. 1980. V. 42 (2). P. 211-233. doi: 10.1016/0019-1035(80)90072-X
Popova O., Borovicka J., Hartmann W.K., Spumy P., Gnos E., Nemtchinov I., Trigo-Rodnguez J.M. Very low strengths of interplanetary meteoroids and small asteroids // Meteoritics & Planetary Science. 2011. V. 46 (10). P. 1525-1550. doi: 10.1111/j.1945-5100.2011.01247.x
Popova O., Borovicka J., Campbell-Brown M. Modelling the entry of meteoroids // Meteoroids, sources of meteor on Earth and beyond / G. Ryabova, D. Asher, M. Campbell-Brown (eds). New York : Cambridge University Press, 2019. P. 9-36.
Frost M.J. Size and spacial distribution in meteoritic showers // Meteoritics. 1969. V. 4 (3). P. 217-232. doi: 10.1111/j.1945-5100.1969.tb01270.x
Holsapple K.A., Housen K.R. A crater and its ejecta: An interpretation of Deep Impact // Icarus. 2007. V. 191 (2). P. 586-597. doi: 10.1016/j.icarus.2006.08.035
 Estimation of the trajectory of meteoroids from Martian clusters | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/9

Estimation of the trajectory of meteoroids from Martian clusters | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/9

Download full-text version
Counter downloads: 167