Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/10

Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow

This paper presents a three-dimensional mathematical model of self-propagating high-temperature synthesis (SHS) of a three-layer “sandwich” sample. The layers are formed from gasless mixtures with the addition of an inert fusible component. The mathematical model is studied numerically using the finite-difference method. The unsteady periodic regimes of gasless combustion of the three-layer sample with square cross-section are revealed with account for melting and thermocapillary flow of the melted inert component of the mixture. The unsteady periodic combustion regimes are specified depending on the relative calorific value of the mixture in the inner layer. High-temperature points move along the side faces of the sample. The velocity of the points’ motion along the combustion surface is much higher than the average burning velocity of the sample. An increase in the melt flow velocity leads to the equalization of the temperature field and stabilization of the combustion regime. The quasi-stationary regimes of control and fusion are studied during the combustion of the sample with an active inner layer, when the intrinsic burning velocities of the donor and acceptor mixtures are close to each other.

Download file
Counter downloads: 18

Keywords

SHS, melting, thermocapillary flow, donor and acceptor mixtures

Authors

NameOrganizationE-mail
Prokof’ev Vadim G.Tomsk State Universitypvg@ftf.tsu.ru
Всего: 1

References

Мержанов А.Г. Термически сопряженные процессы самораспространяющегося высоко температурного синтеза // Доклады РАН. 2010. Т. 434, № 4. С. 489-492.
Linde A.V., Studenikin I.A., Kondakov A.A., Grachev V.V. Thermally coupled SHS processes in layered (Fe2O3 + 2Al)/(Ti + Al)/( Fe2O3 + 2Al) structures: An experimental study // Combustion and Flame. 2019. V. 208. P. 364-368. doi. 10.1016/j.combustflame.2019.07.010
Sytschev A.E., Vrel D., Boyarchenko O.D., Roshchupkin D.V., Sachkov N. V.Combustion syn thesis in bi-layered (Ti-Al)/(Ni-Al) system // Journal of Materials Processing Technology. 2017. V. 240. P. 60-67. doi: 10.1016/j.jmatprotec.2016.09.010 114
Прокофьев В.Г., Лапшин О.В., Смоляков В.К. Макрокинетика горения слоевых компо зиций с легкоплавким инертным слоем // Вестник Томского государственного университета. Математика и механика. 2018. № 52. С. 102-113. doi: 10.17223/19988621/52/10
Максимов Ю.М., Пак А.Т., Лавренчук Г.В., Найбороденко Ю.С., Мержанов А.Г. Спино вое горение безгазовых систем // Физика горения и взрыва. 1979. Т. 15, № 3. С. 156159.
Максимов Ю.М., Мержанов А.Г., Пак А.Т., Кучкин М.Н. Режимы неустойчивого горения безгазовых систем // Физика горения и взрыва. 1981. Т. 17, № 4. С. 51-58.
Ивлева Т.П., Мержанов А.Г. Математическое моделирование трехмерных спиновых режимов безгазового горения // Физика горения и взрыва. 2002. Т. 38, № 1. С. 47-54. doi: 10.1023/A:1014053816863
Прокофьев В.Г., Смоляков В.К. Влияние фазового перехода на трехмерные неустойчивые режимы безгазового горения // Физика горения и взрыва. 2016. Т. 52, № 3. С. 65-71. doi: 10.15372/FGV20160309
Prokof’ev V.G., Unsteady Combustion Modes in Rectangular Rods // Int. Journal Self-Propag. High-Temp. Synth. 2019. V. 28 (3). P. 155-158. doi: 10.3103/S1061386219030099
Прокофьев В.Г., Смоляков В.К. Режимы горения безгазовых систем с плавящимся компонентом в области сильной неустойчивости // Инженерно-физический журнал. 2019. Т. 92, № 3. С. 706-710.
Kurdyumov V.N., Gubernov V.V.Combustion waves in narrow samples of solid energetic material: chaotic versus spinning dynamics // Combustion and Flame. 2021. V. 229. 111407. doi: 10.1016/j.combustflame.2021.111407
Miroshnichenko T.P., Yakupov E.O., Gubernov V.V., Kurdyumov V.N., Polezhaev A.A.Combustion wave in a two-layer solid fuel system // Applied Mathematical Modelling. 2020. V. 77. P. 1082-1094. doi: 10.1016/j.apm.2019.09.037
Nersisyan H.H., Joo S.H., Yoo B.U., Cho Y.H., Kim H.M., Lee J.-H. Melt-assisted solid flame synthesis approach to amorphous boron nanoparticles // Combustion and Flame. 2015. V. 162. P. 3316-3323. doi: 10.1016/j.combustflame.2015.05.021
Yeh C.L., Chen Y.C. Effects of PTFE activation and carbon sources on combustion synthesis of Cr2AlC/Al2O3 composites // Ceramics International. 2018. V. 44. P. 384-389. doi: 10.1016/j.ceramint.2017.09.187
Feng P., Liu W., Farid A., Wua J., Niu J., Wang X., Qiang Y.Combustion synthesis of (Mo1 - xCrx)Si2 (x = 0.00-0.30) alloys in SHS mode // Advanced Powder Technology. 2012. V. 23. P. 133-138. doi: 10.1016/j.apt.2011.01.003
Yeh C.L., Wang H.J.Combustion synthesis of vanadium borides // Journal of Alloys and Compounds. 2011. V. 509. P. 3257-3261. doi: 10.1016/j.jallcom.2010.12.004\\
 Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/10

Periodic combustion regimes for thermally coupled SHS systems with a thermocapillary melt flow | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2022. № 80. DOI: 10.17223/19988621/80/10

Download full-text version
Counter downloads: 167