Peculiarities of the flame formation of a propane-air mixture in a narrow channel
This paper presents a numerical study of the features of propane-air mixture flame propagation in a narrow cylindrical channel. The main purpose of the study is to determine the effect of the channel width on the combustion characteristics of a propaneair mixture with a composition close to stoichiometric. The problem is formulated using the methods of reactive gas dynamics. The solution method is based on the Van Leer method for determining flows on the faces of computational cells. The peculiarities of the combustion front formation and its propagation along the channel are revealed and analyzed. The formation of the curved flame front is shown to have a cyclical nature. The visible flame velocity is obtained as a function of the channel radius. The proposed physical and mathematical model can be used to determine the thermal conditions of operating cylindrical burners.
Keywords
burning velocity,
propane-air mixture,
mathematical modelingAuthors
Moiseeva Kseniya M. | Tomsk State University | Moiseeva_KM@t-sk.ru |
Kantarbaeva Aruzhan I. | Tomsk State University | arukantar@gmail.com |
Krainov Aleksey Yu. | Tomsk State University | akrainov@ftf.tsu.ru |
Всего: 3
References
Семёнов В.Н. Физика быстропротекающих процессов. Горение и детонация газовых смесей. М.: Ин-т проблем безопасного развития атомной энергии, 2006.
van Leer B. Flux-vector spliting for the Euler equations // Eighth International Conference on Numerical Methods in Fluid Dynamics: Proceedings of the Conference, Rheinisch-Westfalische Technische Hochschule Aachen, Germany, June 28 - July 2, 1982 / ed. E. Krause. P. 507-512. (Lecture Notes in Physics; v. 170).
Moiseeva K.M., Krainov A.Yu. Simulation of combustion of methane-air mixture in twodimensional approximation // Journal of Physics: Conference Series. 2022. Art. 012013.
Моисеева К.М., Крайнов А.Ю. Искровое зажигание горючих газов и газовзвесей. Томск: STT, 2020.
Щетинков Е.С. Физика горения газов. М.: Наука, 1965.
Moiseeva K.M., Krainov A.Yu., Krainov D.A. Numerical investigation on burning rate of propane-air mixture // IOP Conf. Series: Materials Science and Engineering. 2019. V. 696. Art. 012011.
Льюис Б., Эльбе Г. Горение, пламя и взрывы в газах / пер. с англ. под ред. К.И. Щелкина, А.А. Борисова. М.: Мир, 1968.
Xiao H., Makarov D., Suna J., Molkov V. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct // Combustion and Flame. 2012. V. 159 (4). P. 1523-1538.
Ponizy B., Claverie A., Veyssiere B. Tulip flame - the mechanism of flame front inversion // Com bustion and Flame. 2014. V. 161 (12). P. 3051-3062.
Xiao H., Wang O., Shen X., Guo S., Sun J. An experimental study of distorted tulip flame formation in a closed duct // Combustion and Flame. 2013. V. 160 (9). P. 1725-1728.
Hackert C.L., Ellzey J.L., Ezekoye O.A. Effects of thermal boundary conditions on flame shape and quenching in ducts // Combustion and Flame. 1998. V. 112 (1-2). P. 73-84.
Xiao H., Houim R.W., Oran E.S. Formation and evolution of distorted tulip flames // Combus tion and Flame. 2015. V. 162 (11). P. 4084-4101.
Dunn-Rankin D., Sawyer R.F. Tulip flames: changes in shape of premixed flames propagating in closed tubes // Experiments in Fluids. 1998. V. 24. P. 130-40.
Bychkov V., Akkerman V., Fru G., Petchenko A., Eriksson L.E. Flame acceleration in the early stages of burning in tubes // Combustion and Flame. 2007. V. 150 (4). P. 263-76.
Dunn-Rankin D., Barr P.K., Sawyer R.F. Numerical and experimental study of "tulip" flame formation in a closed vessel // Symposium (International) on Combustion. 1988. V. 21 (1). P. 1291-301.
Алексеев М.М., Семенов О.Ю. Физическое моделирование тюльпанообразного пламени при горении газов в цилиндрической вертикальной трубе // Вестник кибернетики. 2021. № 1 (41). С. 63-70.
Shen X., He X., Sun J. A comparative study on premixed hydrogen-air and propane-air flame propagations with tulip distortion in a closed duct // Fuel. 2015. V. 161. P. 248-253.
Иванов М.Ф., Киверин А.Д., Яковенко И.С. Самоподдерживаемый режим ускорения пламени в канале и механизм формирования детонации // Инженерный журнал: наука и инновации. 2013. № 8 (20). С. 1-15.