On determining the elastic limit of an adhesive layer in the opening mode of loading
In this paper, the problem of determining the limit of elastic strain of an extremely thin adhesive layer in the opening mode of loading (mode I) is considered. The presence of a nonzero component of the stress tensor along the layer axis is taken into account. The Tresca - Saint-Venant criterion is used as a condition for the transition to a plastic strain state. On the basis of the general variational problem formulation with account for restrictions on the displacement field, the problem is formulated in a differential form. A simplified problem formulation is solved analytically. According to the solution, the stress state in the layer does not depend on its thickness and is specified by the plane problem type. In the plane strain state, the cleavage stress significantly exceeds that in the plane stress state. In this case, Poisson's ratio of the adhesive significantly affects the ratio of cleavage stresses. For a certain value of Poisson's ratio, the Irwin empirical correction is obtained. It is shown that for the transition to a plastic state in the case of plane strain, larger external load is required in contrast to the plane stress state. Due to the finiteness of the stress state in the adhesive layer, as the relative thickness of the layer tends to zero, the plasticity occurs in the layer at an arbitrary small external load.
Keywords
elasticity,
Tresca-Saint-Venant criterion,
extremely thin layer,
opening mode of loadingAuthors
Bogacheva Viktoriya E. | Tula State University | v.boga4eva2014@yandex.ru |
Glagolev Vadim V. | Tula State University | vadim@tsu.tula.ru |
Glagolev Leonid V. | Design Bureau of Instrument Engineering named after Academician A.G. Shipunov | len4ic92@gmail.com |
Markin Aleksey A. | Tula State University | markin-nikram@yandex.ru |
Всего: 4
References
Черепанов Г.П. Механика разрушения композиционных материалов. М.: Наука, 1983. 296 с.
Suo Z., Hutchinson J. W.Interface crack between two elastic layers // International Journal of Fracture. 1990. V. 43 (1). P. 1-18.
Irwin G.R. Crack-extension force for part-through crack in a plate // Transactions of the American Society of Mechanical Engineers. Ser. E. Journal of Applied Mechanics. 1962. V. 29. P. 651-654.
Barenblatt G.I. The mathematical theory of equilibrium cracks in brittle fracture // Advanced in Applied Mechanics. 1962. V. 7. P. 55-129.
The special issue: Cohesive models // Engineering Fracture Mechanics. 2003. V. 70 (14). P. 1741-1987.
Астапов Н.С., Корнев В.М., Кургузое В.Д. Модель расслоения разномодульного бимате риала с трещиной // Физическая мезомеханика. 2016. Т. 19, № 4. С. 49-57.
Hutchinson J. W. Singular behavior at the end of a tensile crack tip in a hardening material // Journal of The Mechanics and Physics of Solids. 1968. V. 16 (1). P. 13-31.
Ustinov K.B., Massabo R., Lisovenko D.S. Orthotropic strip with central semi-infinite crack under arbitrary loads applied far apart from the crack tip. Analytical solution // Engineering Failure Analysis. 2020. V. 110. Art. 104410.
Andrews M.G., Massabo R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Engineering Fracture Mechanics. 2007. V. 74 (17). P. 2700-2720. doi: 1016/j.engfracmech.2007.01.013.
Черных К.Ф. Введение в физически и геометрически нелинейную теорию трещин. М.: Наука, 1996. 288 с.
Stigh U., Alfredsson K.S., Andersson T., Biel A., Carlberger T., Salomonsson K. Some aspects of cohesive models and modelling with special application to strength of adhesive layers // International Journal of Fracture. 2010. V. 165. P. 149-162.
Гольдштейн Р.В., Перельмутер М.Н. Рост трещин по границе соединения материалов // Проблемы механики: сб. ст. М.: Физматлит, 2003. С. 221-239.
Dugdale D.S. Yielding of steel sheets containing slits // Journal of the Mechanics and Physics of Solids. 1960. V. 8 (2). P. 100-104.
Леонов М.Я., Панасюк В.В. Развитие мельчайших трещин в твердом теле // Прикладная механика. 1959. Т. 5, № 4. С. 391-401.
Irwin G.R. Plastic Zone Near a Crack and Fracture Toughness // 7th Sagamore Ordnance Materials Research Conference. 1960. P. 63-78.
Irwin G.R. Linear fracture mechanics, fracture transition, and fracture control // Engineering Fracture Mechanics. 1968. V. 1 (2). P. 241-257.
Lopes R.M., Campilho R.D.S.G., da Silva F.J.G., Faneco T.M.S.Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints // Journal of Adhesion and Adhesives. 2016. V. 67. P. 103-111.
Glagolev V.V., Markin A.A. Fracture models for solid bodies, based on a linear scale parameter // International Journal of Solids and Structures. 2019. V. 158. P. 141-149.
Богачева В.Э., Глаголев В.В., Глаголев Л.В., Инченко О.В., Маркин А.А. Об одном подходе к оценке прочности адгезионного слоя в слоистом композите // Вестник Томского государственного университета. Математика и механика. 2020. № 64. С. 63-76.
Berto F., Glagolev V. V., Glagolev L. V., Markin A.A. About the influence of the elastoplastic properties of the adhesive on the value of the J-integral in the DCB sample // International Journal of Fracture. 2021. V. 232 (1). P. 43-54.
Tresca H. Memoire sur l'ecoulement des corps solides // Mem pres par div savants. 1868. V. 18. P. 733-799.
Ишлинский А.Ю., Ивлев Д.Д. Математическая теория пластичности. М.: Физматлит, 2001. 701 с.
Mindlin R.D. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates // ASME Journal of Applied Mechanics. 1951. V. 18. P. 31-38.
Богачева В.Э., Глаголев В.В., Глаголев Л.В., Маркин А.А. Напряженное состояние и условия инициирования трещины в адгезионном слое композита // Вестник Пермского национального исследовательского политехнического университета. Механика. 2021. № 3. C. 22-34.