Super-efficient robust estimation in Lévy continuous time regression models from discrete data | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/2

Super-efficient robust estimation in Lévy continuous time regression models from discrete data

In this paper we consider the nonparametric estimation problem for a continuous time regression model with non-Gaussian Levy noise of small intensity. The estimation problem is studied under the condition that the observations are accessible only at discrete time moments. In this paper, based on the nonparametric estimation method, a new estimation procedure is constructed, for which it is shown that the rate of convergence, up to a certain logarithmic coefficient, is equal to the parametric one, i.e., super-efficient property is provided. Moreover, in this case, the Pinsker constant for the Sobolev ellipse with the geometrically increasing coefficients is calculated, which turns out to be the same as for the case of complete observations.

Download file
Counter downloads: 17

Keywords

nonparametric estimation, non-Gaussian regression models in continuous time, robust estimation, efficient estimation, Pinsker constant, super-efficient estimation

Authors

NameOrganizationE-mail
Nikiforov Nikita I.Tomsk State Universitynikitanikiforov_97@bk.ru
Pergamenshchikov Serguei M.Tomsk State University; University of Rouen Normandyserge.pergamenchtchikov@univ-rouen.fr
Pchelintsev Evgeny A.Tomsk State Universityevgen-pch@yandex.ru
Всего: 3

References

Beltaief S., Chernoyarov O.V., Pergamenshchikov S.M. (2020) Model selection for the robust efficient signal processing observed with small Levy noise. Annals of the Institute of Statistical Mathematics. 72. pp. 1205-1235.
Ibragimov I.A., Khasminskii R.Z. (1981) Statistical Estimation: Asymptotic Theory. New York: Springer.
Kutoyants Yu.A. (1994) Identification of Dynamical Systems with Small Noise. Dordrecht: Kluwer Academic Publishers.
Pinsker M.S. (1981) Optimal filtration of square integrable signals in Gaussian white noise. Problems of Transmission Information. 17. pp. 120-133.
Kassam S.A. (1988) Signal Detection in Non-Gaussian Noise. New York: Springer-Verlag.
Konev V., Pergamenshchikov S., Pchelintsev E. (2014) Estimation of a regression with the impulse type noise from discrete data. Theory of Probability and its Applications. 58(3). pp. 442-457.
Pchelintsev E. (2013) Improved estimation in a non-Gaussian parametric regression. Statistical Inference for Stochastic Processes. 16(1). pp. 15-28.
Konev V.V., Pergamenshchikov S.M. (2012) Efficient robust nonparametric estimation in a semimartingale regression model. Annales de I'lnstitut Henri Poincare (B) Probability and Statistics. 48(4). pp. 1217-1244.
Konev V.V., Pergamenshchikov S.M. (2015) Robust model selection for a semimartingale continuous time regression from discrete data. Stochastic Processes and their Applications. 125. pp. 294-326.
Pchelintsev E.A., Pergamenshchikov S.M., Povzun M.A. (2022) Efficient estimation methods for non-Gaussian regression models in continuous time. Annals of the Institute of Statistical Mathematics. 74. pp. 113-142.
Demmler A., Reinsch C. (1975) Oscillation matrices with spline smoothing. Numerische Mathematik. 24. pp. 357-382.
Liptser R., Shiryayev A.N. (1989) Theory of Martingales. Dordrecht: Kluwer Academic Publishers.
Pchelintsev E.A., Pergamenshchikov S.M., Leshchinskaya M.A. (2022) Improved estimation method for high dimension semimartingale regression models based on discrete data. Statistical Inference for Stochastic Processes. 25(3). pp. 537-576.
 Super-efficient robust estimation in Lévy continuous time regression models from discrete data | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/2

Super-efficient robust estimation in Lévy continuous time regression models from discrete data | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/2

Download full-text version
Counter downloads: 195