A study of jet formation during the sputtering of electrodes in an arc discharge for the different currents
This work is devoted to experimental and theoretical studies of the sputtering of electrodes in an arc discharge. The temperature distribution in the working chamber during arc discharge is analyzed depending on the discharge current. On the basis of experimental data on the anode sublimation and interelectrode distance, a fan jet is simulated, which is generated during the anode sputtering in an arc discharge. The calculation is carried out using the model describing the processes occurring in the arc plasma, jet propagation, transport of particles by the jet and their ionization. The numerical simulation results for the radial temperature distribution are consistent with the experimental data. The experiments show that an increase in the discharge current leads to an increase in the concentration of fullerenes and graphite structures in the soot. Based on the simulation data, it is shown that this effect is a result of the longer residence time of growing carbon particles in a high-temperature zone (1000-2800 K) at high arc discharge currents. The authors acknowledge the Core Facilities VTAN at NSU for the usage of experimental equipment.
Keywords
arc discharge,
sputtering,
graphite structures,
carbon materialsAuthors
Andryushchenko Vladimir A. | Kutateladze Institute of Thermophysics of the Siberian Branch of RAS | vladimir.andryushchenko@gmail.com |
Boyko Evgeniy V. | Kutateladze Institute of Thermophysics of the Siberian Branch of RAS | renboyko@gmail.com |
Sakhapov Salavat Z. | Kutateladze Institute of Thermophysics of the Siberian Branch of RAS | sakhapov@gmail.com |
Skirda Mikhail S. | Kutateladze Institute of Thermophysics of the Siberian Branch of RAS | lab42_04@itp.nsc.ru |
Smovzh Dmitriy V. | Kutateladze Institute of Thermophysics of the Siberian Branch of RAS | dsmovzh@gmail.com |
Всего: 5
References
Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arc discharge // Journal of Physics D: Applied Physics. 2007. V. 40 (8). P. 2388-2393.
Ando Y., Zhao X., Hirahara K., Suenaga K., Bandow S., Iijima S. Mass production of single-wall carbon nanotubes by the arc plasma jet method // Chemical Physics Letters. 2000. V. 323 (5-6). P. 580-585.
Scott J.H.J., Majetich S.A. Morphology, structure, and growth of nanoparticles produced in a carbon arc // Physical Review B. 1995. V. 52 (17). P. 12564-12571. 10.1103/Phys RevB.52.12564.
Мальцев В.А., Новопашин С.А., Нерушев О.А., Сахапов С.З., Смовж Д.В. Синтез метал лических наночастиц на углеродной матрице // Российские нанотехнологии. 2007. Т. 2, № 5-6. С. 85-89.
Farhat S., Scott C.D. Review of the arc process modeling for fullerene and nanotube produc tion // Journal of Nanoscience and Nanotechnology. 2006. V. 6 (5). P. 1189-1210.
Lefort A., Parizet M.J., El-Fassi S.E., Abbaoui M. Erosion of graphite electrodes // Journal of Physics D: Applied Physics. 1993. V. 26 (8). P. 1239-1243.
Bilodeau J.F., Pousse J., Gleizes A. A mathematical model of the carbon arc reactor for fullerene synthesis // Plasma chemistry and plasma processing. 1998. V. 18 (2). P. 285-303. :1021658717860.
Hinkov I., Farhat S., Scott C.D. Influence of the gas pressure on single-wall carbon nanotube formation // Carbon. 2005. V. 43 (12). P. 2453-2462.
Алексеев Н.И., Дюжев Г.А. Дуговой разряд с испаряющимся анодом (почему род бу ферного газа влияет на процесс образования фуллуренов?) // Журнал технической физики. 2001. Т. 71, № 10. С. 41-49.
Алексеев Н.И. О механизме образования углеродных нанотрубок. I. Термодинамика образования капель расплава углерода в металлическом катализаторе // Журнал технической физики. 2004. Т. 74, № 8. С. 45-50.
Алексеев Н.И. О механизме образования углеродных нанотрубок. II. Кинетика взрывной конденсации капель расплава углерода в металлическом катализаторе // Журнал технической физики. 2004. Т. 74, № 8. С. 51-57.
Keidar M., Beilis I.I. Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes // Journal of Applied Physics. 2009. V. 106 (10). Art. 103304.
Kundrapu M., Keidar M. Numerical simulation of carbon arc discharge for nanoparticle synthesis // Physics of Plasmas. 2012. V. 19 (7). Art. 073510.
Wilke C.R. A viscosity equation for gas mixtures // The journal of chemical physics. 1950. V. 18 (4). P. 517-519.
Кантарбаева А., Моисеева К.М. Особенности распространения пламени в угле-пропано-воздушной газовзвеси // Вестник Томского государственного университета. Математика и механика. 2021. № 74. С. 95-102.
Gouveia S.T., Silva F.V., Costa L.M., Nogueira A.R.A., Nobrega J.A. Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations // Analytica Chimica Acta. 2001. V. 445 (2). P. 269-275. 10.1016/ S0003-2670(01)01255-7.
Tanabashi A., Amano T. New identification of the visible bands of the C2 Swan system // Journal of Molecular Spectroscopy. 2002. V. 215 (2). P. 285-294.
Brooke J.S., Bernath P.F., Schmidt T.W., Bacskay G.B. Line strengths and updated molecular constants for the C2 Swan system // Journal of Quantitative Spectroscopy and Radiative Transfer. 2013. V. 124. P. 11-20.
Gershman S., Raitses Y. Unstable behavior of anodic arc discharge for synthesis of nanomaterials // Journal of Physics D: Applied Physics. 2016. V. 49 (34). Art. 345201.
Du F., Yuan J., Zhang M., Li J., Li Z., Cao M., Chen J., Zhang L., Liu X., Gong A., Xu W., Shao Q. Nitrogen-doped carbon dots with heterogeneous multi-layered structures // RSC Advances. 2014. V. 4 (71). P. 37536-37541.
Теснер П.А. Образование углерода из углеводородов газовой фазы. М.: Химия, 1972.