Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/8

Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances

In this paper, the impact of the Yarkovsky effect and solar radiation pressure on the resonant behavior of three asteroids with small perihelion distances (3200 Phaethon, 394130 2006 HY51, and 137924 2000 BD19) is studied. The corresponding physical parameters are determined to estimate the effect of the solar radiation pressure. The Yarkovsky effect and the solar radiation pressure effect are estimated by comparing the results of the orbital evolution of the asteroids with the main force model and the included estimated perturbation. The application of different force models shows that accounting for the Yarkovsky effect and solar radiation pressure has a slight impact on the evolution of the orbital elements of the asteroids while changing the semimajor axis behavior at the ends of the study interval. This impact changes the approaches of the asteroids to planets. It is revealed that the impact of the Yarkovsky effect is stronger than that of the solar radiation pressure. The evolution of the OMEGNO chaoticity parameter shows that the perturbations do not affect the predictability of the motion interval, but in some cases lead to deceleration or acceleration in growth of the parameter. The studied perturbations have no significant effect on the secular (apsidal-nodal) resonance characteristics due to a weak impact on the evolution of the orbital elements underlying their calculations.

Download file
Counter downloads: 5

Keywords

asteroids with small perihelion distances, mean-motion resonance, apsidal-nodal resonance, orbital evolution

Authors

NameOrganizationE-mail
Galushina Tat’yana Yu.Tomsk State Universitytatyana.galushina@mail.tsu.ru
Letner Oksana N.Tomsk State Universityoksana.letner@gmail.com
Syusina Ol’ga M.Tomsk State Universityolga_syusina@rambler.ru
Всего: 3

References

Мюррей К., Дермотт С. Динамика Солнечной системы. М.: Физматлит, 2009. 588 с.
Nesvorny D., Ferraz-Mello S., Holman M., Morbidelli A. Regular and Chaotic Dynamics in the Mean-Motion Resonances: Implications for the Structure and Evolution of the Asteroid Belt // Asteroids III / eds. W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel. Tucson: University of Arizona Press, 2003. P. 379-394.
Li M., Huang Y., Gong Sh. Assessing the risk of potentially hazardous asteroids through mean motion resonances analyses // Astrophysics and Space Science. 2019. V. 364, is. 5. Art. 78. 12 pp.
Емельяненко В.В. Астероиды, сближающиеся с Солнцем // Астрономический вестник. Исследования Солнечной системы. 2017. Т. 51, № 1. С. 67-71. 10.1134/S003809461 6060010.
Toliou A., Granvik M. Dynamical evolution of near-Earth objects // Europlanet Science Con gress. 2020. 21 Sept. - 9 Oct. 2020. EPSC2020-1104. 2020.
Devyatkin A.V., Gorshanov D.L., Petrova S.N., Martyusheva A.A., L'vov V.N., Tsekmeister S.D. Astrometry and photometry of potentially hazardous asteroid (276033) 2002 AJ129 // Planetary and Space Science. 2022. V. 213. Art. 105427.
Farnocchia D. et al. Near-Earth Asteroids with measurable Yarkovsky effect // Icarus. 2013. V. 224, is. 1. P. 1-13.
Панасенко А.И., Чернетенко Ю.А. Моделирование влияния эффекта Ярковского на дви жение астероидов // Труды ИПА РАН. 2014. № 31. С. 59-65.
Галушина Т.Ю., Летнер О.Н., Сюсина О.М., Ниганова Е.Н. Влияние эффекта Ярковско го на орбитальные резонансы астероидов с малыми перигелийными расстояниями // Известия вузов. Физика. 2022. Т. 65, № 5 (774). С. 105-112.
Everhart E. An efficient integrator that uses Gauss-Radau spacings // Dynamics of comets: their origin and evolution // Proc. 83rd IAU Colloq. Rome, 11-15 June 1984 / eds. A. Carusi, G.B. Valsecchi. Dordrecht: D. Reidel Publ. Co., 1985. P. 185-202.
Авдюшев В.А. Интегратор Гаусса-Эверхарта // Вычислительные технологии. 2010. Т. 15, № 4. С. 31-46.
Galushina T.Yu., Letner O.N. Modified version of IDA software and its application to the study of the motion of asteroid 2007 PR10 // Astronomical and Astrophysical Transactions. 2021. V. 32, is.4. P. 355-370.
Авдюшев В.А. Коллокационный интегратор Lobbie в задачах орбитальной динамики // Астрономический вестник. 2022. T. 56, № 1. С. 36-46.
Шефер В.А., Коксин А.М. Вычисление показателей хаотичности орбит, основанных на касательных векторах: применение к ограниченной задаче трех тел // Известия вузов. Физика. 2013. Т. 56, № 6/3. С. 256-258.
Гребеников Е.А., Рябов Ю.А. Резонансы и малые знаменатели в небесной механике. М.: Наука, 1978. 128 с.
Hams J., Vokrouhlickf D., Delbo' M., Farnocchia D., Polishook D. Pravec P., Hornoch K., Kucakova H., Kusnirak P., Stephens R., Warner B. (3200) Phaethon: Bulk density from Yarkovsky drift detection // Astronomy & Astrophysics. 2018. V. 620. Art. L8. 8 p.
Greenberg A.H., Margot J.-L., Verma A.K., Taylor P.A., Hodge S.E. Yarkovsky Drift Detections for 247 Near-Earth Asteroids // The Astronomical Journal. 2020. V. 159. Art. 92. 21 p.
Letner O.N., Galushina T.Y. Motion features of the asteroid 137924 2000 BD19 // Planetary and Space Science. 2020. V. 181. Art. 104818.
Galushina T.Y., Letner O.N., Niganova E.N. Notes on force models for near-Sun asteroids // Planetary and Space Science. 2021. V. 202. Art. 105232.
 Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/8

Influence of the solar radiation pressure and the Yarkovsky effect on the resonant behavior of asteroids with small perihelion distances | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 85. DOI: 10.17223/19988621/85/8

Download full-text version
Counter downloads: 195