A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon
This work is devoted to the description and testing of the developed numerical microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in street canyons and city blocks. The model is successfully applied to consider three-dimensional turbulent steady flows in a wind tunnel with a heated groove and in a cavern channel with a pollutant supply, for which measurements are available. A comparison of the calculated results, experimental data, and calculations obtained using ANSYS Fluent demonstrates the validity of the numerical model. The model is used to calculate and analyze the fields of wind speed and pollutant concentration, as well as the integral characteristics of the pollutant concentration in a street canyon as a whole and in a breathing zone (up to 2 meters above the canyon bottom) with partial or overall heating of the windward wall of the canyon. The flow structure and the observed maximum and average concentrations of the pollutants are found to depend significantly on the size of the heated part of the windward canyon wall.
Keywords
turbulence modeling,
street canyon,
nonisothermality,
pollutant transport,
numerical calculationsAuthors
Danilkin Evgeniy A. | Tomsk State University | ugin@math.tsu.ru |
Leshchinskiy Dmitriy V. | Tomsk State University | 360flip182@gmail.com |
Starchenko Aleksandr V. | Tomsk State University | starch@math.tsu.ru |
Всего: 3
References
Cohen A.J., Brauer M., Burnett R., Anderson H.R., Frostad J., Estep K., Balakrishnan K., Brunekreef B., Dandona L., Dandona R., Feigin V. etc. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015 // Lancet. 2017. V. 389 (10082). P. 1907-1918.
Nakajima K., Ooka R., Kikumoto H. Evaluation of k-s Reynolds stress modeling in an idealized urban canyon using LES // Journal of Wind Engineering and Industrial Aerodynamics. 2018. V. 175. P. 213-228.
Lateb M., Meroney R.N., Yataghene M., Fellouah H., Saleh F., Boufadel M.C. On the use of numerical modelling for near-field pollutant dispersion in urban environments - A review // Environmental Pollution. 2016. V. 208, pt. A. P. 271-283.
Chew L.W., Glicksman L.R., Noford L.K. Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales // Building and Environment. 2018. V. 146. P. 7787.
Старченко А.В., Данилкин Е.А., Лещинский Д.В. Численное моделирование распростра нения выбросов автотранспорта в уличном каньоне // Математическое моделирование. 2022. Т. 34, № 10. С. 81-94.
Мешкова В.Д., Дектерев А.А., Филимонов С.А., Литвинцев К.Ю. SigmaFlow как инстру мент исследования ветрового комфорта в условиях городской среды // Журнал Сибирского федерального университета. Сер. Техника и технологии. 2022. № 15 (4). С. 490504.
Henkes R.A.W.M., van der Flugt F.F., Hoogendoorn C.J. Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models // Int. J. Heat Mass Transfer. 1991. V. 34 (2). P. 377-388.
Launder B.E., Spalding D.B. The numerical computation of turbulent flows.Computational Methods in Applied Mechanics and Engineering. 1974. V. 3 (2). P. 269-289.
Van Leer B. Towards the ultimate conservative difference scheme. II. monotonicity and conservation combined in a second order scheme // Journal of Computational Physics. 1974. V. 14. P. 361-370.
Patankar S. Numerical heat transfer and fluid flow. New York: Hemisphere Publ. Corporation, 1980. 214 р.
Старченко А.В., Нутерман Р.Б., Данилкин Е.А. Численное моделирование турбулентных течений и переноса примеси в уличных каньонах. Томск: Изд-во Том. ун-та, 2015. 252 с.
Allegrini J., Dorer V., Carmeliet J. Wind tunnel measurements of buoyant flows in street canyons // Building and Environment. 2013. V. 59. P. 315-326. 10.1016/j.buildenv. 2012.08.029.
Kikumoto H., Ooka R. Large-eddy simulation of pollutant dispersion in a cavity at fine grid resolutions // Building and Environment. 2018. V. 127. P. 127-137. 10.1016/j.buildenv. 2017.11.005.
Wang P., Zhao D., Wang W., Mu H., Cai G., Liao C. Thermal Effect on Pollutant Dispersion in an Urban Street Canyon // Int. J. Environ. Res. 2011. V. 5 (3). P. 813-820.
Chen L., Hang J., Chen G., Liu S., Lin Y., Mattsson M., Sandberg M., Ling H. Numerical investigations of wind and thermal environment in 2D scaled street canyons with various aspect ratios and solar wall heating // Building and Environment. 2021. V. 189. Art. 107510.
Старченко А.В., Данилкин Е.А., Семёнова А.А., Лещинский Д.В. Численное моделирование турбулентного течения в уличном каньоне при смешанной конвекции // Девятая Сибирская конференция по параллельным и высокопроизводительным вычислениям: сб. ст. Томск: Изд. Дом Том. гос. ун-та, 2017. С. 70-77.