Modeling of inhomogeneous deformation of porous ceramics using gaussian random fields
In this paper, the inhomogeneous distribution of strain in porous ceramic specimens under diametral compression is numerically analyzed using a stochastic representation of the material structure. Models of the structure of porous ceramics are based on a probabilistic description of mechanical properties of ceramics using Gaussian random fields. Numerical simulation is performed for zirconium ceramics with porosities of 4 and 42 %. In the framework of the modeling method used, different porosities of ceramics are taken into account in terms of effective mechanical properties and parameters of the covariation matrix of a random Gaussian field. The simulation of the diametral compression of porous ceramic specimens is carried out in a two-dimensional formulation under plane-strain conditions. The loading is set in the upper and lower parts of the specimen near the central vertical axis through the velocities of the selected nodes. Distributions of the strain tensor components for the studied specimens are analyzed, and their evolution in the central part of the specimens is studied in detail. It is shown that the strain is localized in the form of bands of different sizes and intensities inclined at an angle of approximately 45° to the loading axis. The difference in the strain distributions for the specimens with various porosities in the performed calculations is a result of different models of the inhomogeneous structure. The specimen with a porosity of 4 % is characterized by a greater number of heterogeneous regions of smaller size compared with a specimen with a porosity of 42 %. The proposed method of describing the material structure allows one to obtain various types of inhomogeneous strain distributions under diametral compression, as well as to control the size of heterogeneous regions in the strain distributions.
Keywords
nhomogeneous random structure,
porous ceramics,
diametral compression test,
stochastic modeling,
Gaussian random fields,
strain inhomogeneity,
numerical modelingAuthors
Zimina Valentina A. | Institute of Strength Physics and Materials Science of the Siberian Branch of RAS | miva@ispms.ru |
Всего: 1
References
ГОСТ 21153.3-85. Породы горные. Методы определения предела прочности при одно осном растяжении, М.: Изд-во стандартов, 1986. 14 с.
ASTM D3967-08. Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. West Conshohocken, PA: ASTM International, 2008. 4 p.
Abdullah R., Tsutsumi T., Amin Rashid A.S.A., Khalfalla F.A.I., Ahmed U.A., Shahrin I. Evolution on deformation behaviour of Brazilian test under different contact area using particle image velocimetry and finite element modeling // Measurement. 2020. V. 159. Art. 107796.
Abshirini M., Soltani N., Marashizadeh P. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method // Optics and Lasers in Engineering. 2016. V. 78. P. 99-105.
Kundu S., Stroisz A., Pradhan S. A simple discrete-element-model of Brazilian test // The European Physical Journal B. 2016. V. 89. P. 130-1-130-7.
Zhu W.C., Tang C.A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading // International Journal of Rock Mechanics & Mining Sciences. 2006. V. 43. P. 236-252.
Mousavi Nezhad M., Fisher Q.J., Gironacci E., Rezania M. Experimental study and numerical modeling of fracture propagation in shale rocks during Brazilian disk test // Rock Mechanics and Rock Engineering. 2018. V. 51. P. 1755-1775.
Jadaan O.M., Wereszczak A.A. Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen. Report ORNL-TM-2009/100. Oak Ridge, TN: Oak Ridge National Laboratory, 2009. 39 p.
Reddy S., Mukunda P.G., Aithal K., Shetty P.B. Strength evaluation of flake and spheroidal graphite cast irons using diametral compression test // Journal of Materials Research and Technology. 2017. V. 6 (1). P. 96-100.
Galvez F., Rodriguez J., Sanchez V. Tensile strength measurements of ceramic materials at high rates of strain // Journal de Physique IV Proceedings, EDP Sciences. 1997. V. 07 (C3). P. C3-151-C3-156. :1997328.
Bouali M.F., Bouassida M. Numerical Simulation of the effect of loading angle on initial cracks position point: Application to the Brazilian test // Applied Sciences. 2021. V. 11 (8). P. 3573-1-3573-21.
Torquato S. Random Heterogeneous Materials: Microstructures and Macroscopic Properties. New York: Springer, 2002. 724 p.
Rahman S. A random field model for generating synthetic microstructures of functionally graded materials // The International Journal for Numerical Methods in Engineering. 2008. V. 76, is. 7. P. 972-993.
Yeong C.L.Y., Torquato S. Reconstructing random media // Physical Review E. 1998. V. 57 (1). P. 495-506.
Sahimia M., Tahmasebib P. Reconstruction, optimization, and design of heterogeneous materials and media: Basic principles, computational algorithms, and applications // Physics Reports. 2021. V. 939. P. 1-82.
Bochenek B., Pyrz R. Reconstruction of random microstructures - A stochastic optimization problem // Computational Materials Science. 2004. V. 31 (1). P. 93-112.
Quiblier J.A. A new three-dimensional modeling technique for studying porous media // Journal of Colloid and Interface Science. 1984. V. 98 (1). P. 84-102.
Feng J., Li C., Cen S., Owen D. Statistical reconstruction of two-phase random media // Computers & Structures. 2014. V. 137. P. 78-92.
Feng J., Cen S., Li C., Owen D. Statistical reconstruction and Karhunen-Loeve expansion for multiphase random media // The International Journal for Numerical Methods in Engineering. 2016. V. 105 (1). P. 3-32.
Севостьянова И.Н., Саблина Т.Ю., Бурлаченко А.Г., Кульков С.Н. Механика деформирования и разрушения композита WC-(Fe-Mn-C) при осевом сжатии // Физическая мезомеханика. 2021. Т. 24, № 6. С. 50-57.
Скрипняк В.В., Иохим К.В, Скрипняк В.А. Локализация пластической деформации технически чистого титана в сложном напряженном состоянии при высокоскоростном растяжении // Вестник Томского государственного университета. Математика и механика. 2021. № 70. С. 89-102.
Ташкинов М.А., Шалимов А.С. Моделирование влияния микромасштабных морфологических параметров на деформационное поведение пористых материалов с металлической матрицей // Физическая мезомеханика. 2021. Т. 24, № 5. С. 130-137.
Бакеев Р.А., Макаров П.В., Перышкин А.Ю., Промахов В.В., Жуков А.С., Климова-Корсмик О.Г. Экспериментальное и численное изучение механических свойств и особенностей деформирования и разрушения металлокерамического композита TiNi-TiB2, полученного методом прямого лазерного выращивания // Физическая мезомеханика. 2018. Т. 21, № 5. С. 56-66.
Анисимова М.А., Князева А.Г. Оценка напряжений и деформаций в процессе формирования переходного слоя между частицей и матрицей // Вестник Томского государственного университета. Математика и механика. 2020. № 63. С. 60-71.
Микушина В.А., Смолин И.Ю. Численное моделирование деформирования и разрушения пористой алюмооксидной керамики на мезоуровне // Вестник Томского государственного университета. Математика и механика. 2019. №. 58. С. 99-108.
Седов Л.И. Механика сплошной среды: в 2 т. СПб.: Лань, 2004. 528, 560 с.
Wilkins M.L.Computer Simulation of Dynamic Phenomena. Berlin: Springer-Verlag, 1999. 246 p.
Schlather M., Malinowski A., Menck P.J., Oesting M., Strokorb K. Analysis, simulation and prediction of multivariate random fields with package Random Fields // Journal of Statistical Software. 2015. V. 63 (8). P. 1-25.
Smolin I.Yu, Zimina V.A., Sablina T.Yu., Sevostyanova I.N., Gorbatenko V.V., Kulkov S.N. Experimental and numerical investigation of strain inhomogeneity in zirconia during a Brazilian test // International Journal of Solids and Structures. 2022. V. 256. Art. 111978.
Кульков С.Н., Смолин И.Ю., Микушина В.А., Саблина Т.Ю., Севостьянова И.Н., Горбатенко В.В. Исследование локализации деформации в хрупких материалах при их испытаниях методом "бразильского теста" // Известия вузов. Физика. 2020. Т. 63, № 6 (750). С. 70-76.
Ayachit U. The ParaView Guide: A Parallel Visualization Application. Kitware Inc., 2015. 276 p.