Numerical model of the motion of artificial Earth satellites | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 86. DOI: 10.17223/19988621/86/1

Numerical model of the motion of artificial Earth satellites

This paper presents the latest version of the software package "Numerical model of the motion of artificial Earth satellites". Two versions of the program have been developed: one for a personal computer and another for the "SKIF Cyberia" supercomputer complex with parallelization of computational tasks at Tomsk State University. The software can take into account the following perturbing factors: geopotential nonsphericity effect, secular variations in the first zonal harmonics and tidal deformations within the Earth, gravitational influence of the Sun and Moon, radiation forces, atmospheric drag acceleration, influence of major planets, selenopotential harmonics, and relativistic effects. To study the chaotic nature of the orbital motion of near-Earth satellites, the developed software package is improved with the possibility of calculating the MEGNO parameter. The numerical model allows the user to additionally calculate resonant parameters using analytical and numerical techniques when studying the features of the orbital evolution of near-Earth objects. In the presented version of the software package for a personal computer, the interaction with the user is carried out by means of the software interface. The interface additionally allows one to create an input text file based on the completed data for further use in the version for the "SKIF Cyberia" supercomputer.

Download file
Counter downloads: 48

Keywords

numerical methods, artificial Earth satellites (AES), orbital evolution, chaotic and stable orbits, MEGNO

Authors

NameOrganizationE-mail
Aleksandrova Anna G.Tomsk State Universityaleksandrovaannag@mail.ru
Popandopulo Nikita A.Tomsk State Universitynikas.popandopulos@gmail.com
Kucheryavchenko Nikita A.Tomsk State Universitywallguet@gmail.com
Avdyushev Viktor A.Tomsk State Universityscharmn@mail.ru
Bordovitsyna Tat’yana V.Tomsk State Universitybordovitsyna@mail.ru
Всего: 5

References

Александрова А.Г., Авдюшев В.А., Попандопуло Н.А., Бордовицына Т.В. Численное мо делирование движения околоземных объектов в среде параллельных вычислений // Известия вузов. Физика. 2021. Т. 64, № 8. С. 168-175. doi: 10.17223/00213411/64/8/168.
Бордовицына Т.В., Авдюшев В.А., Чувашов И.Н., Александрова А.Г., Томилова И.В. Чис ленное моделирование движения систем ИСЗ в среде параллельных вычислений // Известия. вузов. Физика. 2009. Т. 52, № 10/2. С. 5-11.
Бордовицына Т.В., Александрова А.Г., Чувашов И.Н. Комплекс алгоритмов и программ для исследования хаотичности в динамике искусственных спутников Земли // Известия вузов. Физика. 2010. Т. 53, № 8/2. С. 14-21.
Попандопуло Н.А., Александрова А.Г., Бордовицына Т.В. Анализ динамической структу ры вековых резонансов в окололунном орбитальном пространстве // Вестник Томского государственного университета. Математика и механика. 2022. № 77. С. 110-124. doi: 10.17223/19988621/77/9.
Everhart E. Implicit Single-Sequence Methods for Integrating Orbits // Celestial Mechanics. 1974. V. 10 (1). P. 35-55. doi: 10.1007/BF01261877.
Everhart E. An efficient integrator that uses Gauss-Radau spacings // An efficient integrator that uses Gauss-Radau spacings. Dynamics of Comets: Their Origin and Evolution. Astrophysics and Space Science Library. 1985. V. 115 (4). P. 185-202. doi: 10.1007/978-94-009-5400-7_17.
Авдюшев В.А. Новый коллокационный интегратор для решения задач динамики. I. Тео ретические основы // Известия вузов. Физика. 2020. Т. 63, № 11 (755). С. 131-140. doi: 10.17223/00213411/63/11/131.
Petit G., Luzum B. IERS Technical note 36. Frankfurt am Main : Verlag des Bundesamts fur Kartographie und Geodasie, 2010.
Cunningham L.E. On the Computation of the Spherical Harmonic Terms Needed During the Numerical Integration of the Orbital Motion of an Artificial Satellite // Celestial Mechanics. 1970. V. 2. P. 207-216. doi: 10.1007/BF01229495.
Lunar Prospector Spherical Harmonics and Gravity Models. 2006. URL: https://pds-geosciences.wustl.edu/dataserv/gravity_models.htm (accessed: 03.05.2023).
Дубошин Н.Г. Небесная механика. Основные задачи и методы. М. : Наука, 1968.
IERS Conventions 2003. URL: http://tai.bipm.org/iers/conv2003/conv2003.html (accessed: 03.05.2023).
Folkner W.M., Park R.S. Planetary ephemeris DE438 for Juno. Technical Report IOM392R-18-004. Pasadena, CA : Jet Propulsion Laboratory, 2018.
Бордовицына Т.В., Авдюшев В.А. Теория движения искусственных спутников Земли. Аналитические и численные методы. Томск : Изд-во Том. ун-та, 2007.
Robertson H.P. Dynamical Effects of Radiation in the Solar System // Monthly Notices of the Royal Astronomical Society. 1937. V. 97. P. 423-438. doi: 10.1093/mnras/97.6.423.
Vokrouhlicky D., Farinella P., Mignard F. Solar radiation pressure perturbations for Earth’s satellites, III globalatmospheric phenomena and albedo effect. // Astronomy & Astrophysics. 1993. V. 290. P. 324-334.
Vokrouhlicky D., Farinella P., Mignard F. Solar radiation pressure perturbations for Earth satellites. IV. Effects of the Earth's polar flattening on the shadow structure and the penumbra transitions // Astronomy & Astrophysics. 1996. V. 307. P. 635-644.
Picone M., Hedin A.E., Drob D. Naval Research Laboratory. URL: http://modelweb.gsfc.nasa.gov/atmos/nrlmsise00.html (access: 30.11.2015).
Brumberg V.A. On Relativistic Equations of Motion of an Earth Satellite // Celestial Mechanics and Dynamical Astronomy. 2004. V. 88. P. 209-225. doi: 10.1023/B:CELE.0000016821. 33627.77.
Brumberg V.A., Ivanova T.V. Precession/Nutation Solution Consistent with the General Planetary Theory // Celestial Mechanics and Dynamical Astronomy. 2007. V. 97 (3). P. 189-210. doi: 10.1007/s10569-006-9060-7.
Cincotta P.M., Simo C. Simple tools to study global dynamics in non-axisymmetric galactic potentials - I // Astronomy and Astrophysics Supplement. 2000. V. 147. P. 205-228. doi: 10.1051/aas:2000108.
Cincotta P.M., Girdano C.M., Simo C. Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits // Physica D. 2003. V. 182. P. 151-178. doi: 10.1016/S0167-2789(03)00103-9.
Valk S., Delsate N., Lemaitre A., Carletti T. Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator // Advances in Space Research. 2009. V. 43 (7). P. 1509-1526. doi: 10.1016/j.asr.2009.02.014.
Попандопуло Н.А., Александрова А.Г., Бордовицына Т.В. К обоснованию численноаналитической методики выявления вековых резонансов // Известия вузов. Физика. 2022. Т. 65, № 6 (775). С. 47-52. doi: 10.17223/00213411/65/6/47.
Guillou A., Soule J.L. La Resolution Numerique des Problemes Differentielles aux Conditions Initials par des Methodes de Collocation // ESAIM: Mathematical Modelling and Numerical Analysis - Modelisation Mathematique et Analyse Numerique. 1969. V. 3 (R3). P. 17-44.
Wright K. Some relationships between implicit Runge-Kutta, collocation and Lanczosx methods, and their stability properties // BIT Numerical Mathematics. 1970. V. 10. P. 217-227.
Hairer E., Norsett S. P., Wanner G. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, 2008.
Hairer E., Lubich C., Wanner G. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, 2006.
 Numerical model of the motion of artificial Earth satellites | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 86. DOI: 10.17223/19988621/86/1

Numerical model of the motion of artificial Earth satellites | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 86. DOI: 10.17223/19988621/86/1

Download full-text version
Counter downloads: 120