Mechanical behavior of aluminum alloy 1520 under tension in the range of strain rates from 10–1 to 103 s–1 | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 86. DOI: 10.17223/19988621/86/9

Mechanical behavior of aluminum alloy 1520 under tension in the range of strain rates from 10–1 to 103 s–1

The mechanical behavior of aluminum alloy 1520 is studied in a wide range of strain rates under uniaxial tension and pressing of plates with a hemispherical indenter at velocities up to 10 m/s at room temperature using an Instron VHS 40/50-20 high-velocity servo-hydraulic test machine. The experiments are performed in accordance with the test standards ASTM E 8/E 8M, ISO 26203-2:2011, ASTM E3205, and GOST 10510-80. The obtained results are used to calibrate a constitutive equation and a model of the alloy failure under dynamic loading. The numerical simulation results for uniaxial tension of specimens with constant strain rates and high-speed punching of 1 mm thick plates with a hemispherical punch with a diameter of 20 mm are consistent with the experimental data. Numerical simulations are performed using the LS DYNA solver (ANSYS WB 15.2). To obtain adequate predictions of the mechanical behavior of aluminum-magnesium alloy 1520 using the Johnson-Cook models, it is necessary to use higher plastic strains before failure as compared to the average macroscopic values recorded during tension testing of the alloy. The presented results can be used when performing numerical studies of the mechanical behavior of structural elements and metamaterials made of alloy 1520 under dynamic loading.

Download file
Counter downloads: 10

Keywords

aluminum-magnesium alloy, dynamic impacts, dynamic punching test

Authors

NameOrganizationE-mail
Skripnyak Vladimir A.Tomsk State Universityskrp2006@yandex.ru
Chirkov Maksim O.Tomsk State Universitychirkovmaxim@mail.ru
Skripnyak Vladimir V.Tomsk State Universityskrp2012@yandex.ru
Всего: 3

References

Vishnukumar M., Pramod R., Rajesh Kannan A. Wire arc additive manufacturing for repairing aluminium structures in marine application // Materials Letters. 2021. V. 299. Art. 130112. doi: 10.1016/j.matlet.2021.130112.
Промахов В.В., Матвеев А.Е., Шульц Н.А., Бахмат В.Р., Дронов Ф.Ю., Туранов Т.Э. Исследование структуры и свойств металломатричных композиционных материалов, полученных методом прямого лазерного выращивания // Вестник Томского государственного университета. Математика и механика. 2022. № 77. С. 125-139. doi: 10.17223/19988621/77/10.
Хрусталев А.П., Платов В.В., Кахидзе Н.И., Жуков И.А., Ворожцов А.Б. Влияние нано частиц вольфрама на структуру и механическое поведение алюминиевого сплава 1550 в условиях квазистатического нагружения // Вестник Томского государственного университета. Математика и механика. 2о21. № 74. С. 141-153. doi: 10.17223Л9988621/74/14.
Алюминий АМг2 // Центральный металлический портал. 2023. URL: https://metallicheckiyportal.ru/marki_metallov/alu/AMg2 (дата обращения: 24.05.2023).
Li X., Shi T., Li B., Chen X., Zhang C., Guo Z., Zhang Q. Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance. // Materials and Design. 2019. V. 183. Art. 108152. doi: 10.1016/j.matdes.2019.108152.
He H., Yang T., Ren Y., Peng Y., Xue S., Zheng L. Experimental investigation on the formability of Al-Mg alloy 5052 sheet by tensile and cupping test // Materials. 2023. V. 15. Art. 8949. doi: 10.3390/ma15248949.
Скрипняк Н.В. Особенности разрушения алюминий-магниевого сплава АМг6 при высо коскоростной деформации // Известия вузов. Физика. 2015. Т. 58, № 5. С. 96-101.
Третьякова Т.В., Вильдеман В.Э. Закономерности и схематизация процесса локализации пластического течения при испытаниях плоских образцов алюминиево-магниевого сплавах // Физическая мезомеханика. 2017. Т. 20, № 2. С. 71-78.
LS-DYNA3D Theoretical manual. Livermore, CA : Livermore software Technology Corpora tion, 1993.
Skripnyak V. V., Skripnyak E.G., Skripnyak V.A. Fracture of titanium alloys at high strain rates and under stress triaxiality // Metals. 2020. V. 10, № 3. Art. 305. doi: 10.3390/met10030305.
Lucon E., Benzing J., Hrabe N. Development and validation of small punch testing at NIST : National Institute of Standards and Technology Interagency or Internal Report 8303 // Natl. Inst. Stand. Technol.Interag.Intern. 2020. V. 8303. 55 p. doi: 10.6028/NIST.IR.8303.
Norris S.D., Parker J.D. Deformation processes during disc bend loading // Materials Science and Technology. 1996. V. 12 (2). P. 163-170. doi: 10.1179/mst.1996.12.2.163.
Vorlicek V., Exworthy L.F., Flewitt P.E.J. Evaluation of a miniaturized disc test for establishing the mechanical properties of low-alloy ferritic steels // Journal of Materials Science. 1995. V. 30. P. 2936-2943. doi: 10.1007/BF00349666.
Skripnyak V.V., Skripnyak V.A. Hexagonal close packed (hcp) alloys under dynamic impacts // Journal of Applied Physics. 2022. V. 131. Art. 165902. doi: 10.1063/5.0085338.
Carmona R., Zhu Q., Sellars C.M., Beynon J.H. Controlling mechanisms of deformation of AA5052 aluminium alloy at small strains under hot working conditions // Materials Science and Engineering: A. 2005. V. 393 (1-2). P. 157-163. doi: 10.1016/j.msea.2004.11.010.
Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures // Engineering Fracture Mechanics. 1985. V. 21. P. 31-48. doi: 10.1016/0013-7944(85)90052-9.
Taylor G.I., Quinney H. The latent energy remaining in a metal after cold working // Proc. Royal Soc. London. Ser. A. Mathematical and Physical Sciences. 1934. V. 143, № 849. P. 307-326.
Bragov A.,Igumnov L., Konstantinov A., Lomunov A., Rusin E. Efects of high strain rate and self-heating on plastic deformation of metal materials under fast compression loading // Journal of Dynamic Behavior of Materials. 2019. V. 5. P. 309-319. doi: 10.1007/s40870-019-00214-x.
Prakash G., Singh N.K., Sharma P., Gupta N.K. Tensile, compressive, and flexural behaviors of Al5052-H32 in a wide range of strain rates and temperatures // Journal of Materials in Civil Engineering. 2020. V. 32, № 5. Art. 04020090. doi: 10.1061/(ASCE)MT.1943-5533.0003154.
Ijaz H., Zain-ul-abdein M., Saleem W., Asad M., Mabrouki T. Modified Johnson-Cook plasticity model with damage evolution: application to turning simulation of 2XXX aluminium alloy // Journal of Mechanics. 2017. V. 33. P. 777-788. doi: 10.1017/jmech.2017.11.
Song P., Li W., Wang X., Xu W. Study on mechanical properties and constitutive model of 5052 aluminium alloy // Materials Science and Technology. 2019. V. 35, № 8. P. 916-924. doi: 10.1080/02670836.2019.1596611.
Skrlec A., Klemenc J. Estimating the strain-rate-dependent parameters of the Cowper-Symonds and Johnson-Cook material models using Taguchi arrays // Strojniski vestnik - Journal of Mechanical Engineering. 2016. V. 62, № 4. P. 220-230. doi: 10.5545/sv-jme.2015.3266.
 Mechanical behavior of aluminum alloy 1520 under tension in the range of strain rates from 10<sup>–1</sup> to 10<sup>3</sup> s<sup>–1</sup> | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 86. DOI: 10.17223/19988621/86/9

Mechanical behavior of aluminum alloy 1520 under tension in the range of strain rates from 10–1 to 103 s–1 | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 86. DOI: 10.17223/19988621/86/9

Download full-text version
Counter downloads: 120