A mathematical model of dissolved oxygen transport during the thermal bar evolution
The article describes а 2.5D non-hydrostatic model of dissolved oxygen transport in a freshwater lake. The oxygen dynamics are carried out through oxygen exchange with the atmosphere and physical transfer due to the effect of the thermal bar. An intraday change in wind speed (that influences the rate of oxygen transition from gas to liquid) is taken into account at the air-water interface. Space-time distributions of temperature and dissolved oxygen concentration were obtained during the spring thermal bar on an example of Barguzin Bay of Lake Baikal. The results of simulation showed that the vertical flows generated by the spring thermal bar contributed to an increase in dissolved oxygen content in the thermoactive region of the bay. Due to the action of the thermal bar, areas with different levels of oxygen are formed in the body of water. There is not only a quantitative but also a qualitative difference between the oxygen distributions obtained for the thermoactive and the thermoinert regions. It has been also found that the wind speed and the wind duration affect the oxygen saturation of water at the thermal bar. The results of this study confirm the barrier function of the thermal bar.
Keywords
thermal bar,
dissolved oxygen,
temperature of maximum density,
mathematical model,
numerical experiment,
lake ecosystem,
Lake BaikalAuthors
Tsydenov Bair O. | Tomsk State University | tsydenov@math.tsu.ru |
Всего: 1
References
Volkova E.A., Bondarenko N.A., Timoshkin O.A. Morphotaxonomy, distribution and abun dance of Spirogyra (Zygnematophyceae, Charophyta) in Lake Baikal, East Siberia // Phycologia. 2018. V. 57, № 3. P. 298-308. doi: 10.2216/17-69.1.
Timoshkin O.A., Bondarenko N.A., Kulikova N.N., Lukhnev A.G., Maximova N.V., Malnik V.V., Moore M. V., Nepokrytykh A. V., Obolkina L.A., Rozhkova N.A., Shirokaya A.A., Tomberg I. V., Zaitseva E.P., Bukshuk N.A., Poberezhnaya A.E., Gula M.I., Timoshkina E.M., Volkova E.A., Zvereva Yu.M. Protection of Lake Baikal requires more stringent, not more lenient, environmental regulation // J. Great Lakes Res. 2019. V. 45, № 3. P. 401-402. DOI: 10.1016/j.jglr. 2019.04.002.
Forel F.A. La congelation des lacs Suisses et Savoyards pendant l’hiver 1879-1880. Lac Leman // L’Echo des Alpes. 1880. № 3. P. 149-161.
Блохина Н.С., Показеев К.В. Уникальное природное явление - термобар // Земля и Все ленная. 2015. № 6. С. 78-88.
Тихомиров А.И. Термика крупных озер. Л. : Наука, 1982. 232 с.
The Engineering ToolBox. Oxygen - solubility in fresh and sea water vs. temperature. URL: https://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html (accessed: 14.08.2023).
Wanninkhof R. Relationship between wind speed and gas exchange //j. Geophys. Res. 1992. № 97. P. 7373-7382. doi: 10.1029/92JC00188.
Aleksandrova M.P., Gulev S.K., Sinitsyn A.V. An improvement of parametrization of short wave radiation at the sea surface on the basis of direct measurements in the Atlantic // Russian Meteorology and Hydrology. 2007. V. 32, № 4. P. 245-251. doi: 10.3103/S1068373907040048.
Hurley P. The air pollution model (TAPM) Version 2. Part 1: Technical description. CSIRO Atmospheric Research, 2002.
Chen C.T., Millero F.G. Precise thermodynamic properties for natural waters covering only limnologies range // Limnol. Oceanogr. 1986. V. 31, № 3. P. 657-662.
Цыденов Б.О., Старченко А.В. Применение двухпараметрической k-⍵ модели турбулентности для исследования явления термобара // Вестник Томского государственного университета. Математика и механика. 2014. № 5 (31). C. 104-113.
Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models // AIAA J. 1988. V. 26, № 11. P. 1299-1310. doi: 10.2514/3.10041.
Tsydenov B.O. A numerical study of the thermal bar in shallow water during the autumn cooling //j. Great Lakes Res. 2019. V. 45, № 4. P. 715-725. doi: 10.1016/j.jglr.2019.05.012.
Orlanski I. A simple boundary condition for unbounded hyperbolic flows //j.Comput. Phys. 1976. V. 21, № 3. P. 251-269. doi: 10.1016/0021-9991(76)90023-1.
Patankar S. Numerical heat transfer and fluid flow. CRC Press, 1980. 197 p.
Leonard B. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Computer Methods in Applied Mechanics and Engineering. 1979. V. 19, № 1. P. 59-98. doi: 10.1016/0045-7825(79)90034-3.
Tsydenov B.O., Kay A., Starchenko A.V. Numerical modeling of the spring thermal bar and pollutant transport in a large lake // Ocean Modelling. 2016. V. 104. P. 73-83. doi: 10.1016/j.ocemod.2016.05.009.
Ильин В.П. Методы неполной факторизации для решения алгебраических систем. М. : Физматлит, 1995. 288 c.
Shimaraev M.N., Verbolov V.I., Granin N.G., Sherstyankin P.P. Physical Limnology of Lake Baikal: A Review. Irkutsk-Okayama, 1994. 81 p.
Вотинцев К.К. Гидрохимия // Проблемы Байкала / ред. Г.И. Галазий, К.К. Вотинцев. Новосибирск, 1978. Т. 16, № 36. С. 124-146.
Holland P.R., Kay A., Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake //j. Mar. Syst. 2003. V. 43, № 1-2. P. 61-81. doi: 10.1016/S0924-7963(03)00089-7.
Расписание Погоды. URL: https://rp5.ru/(дата обращения: 14.08.2023).