State of fullerene C60 in a two-component gas mixture
In this paper, the non-equilibrium state of a gaseous molecular system containing nitrogen, helium, and fullerenes is studied in the framework of the model of classical molecular dynamics. In such systems, the non-equilibrium state is determined by different states of single components. Here, the heavy fraction of the fullerenes can induce the internal non-equilibrium state associated with the difference between its translational and rotational temperatures. This paper proposes an original method for calculating the rotations of fullerenes in space, which does not use Euler angles and therefore has no consequential restrictions. The diffusion trajectories of fullerene particles are calculated, and the energy of their rotation is determined as the average temperature in the system of 300 K. The calculated results show that the internal non-equilibrium state of the fullerene fraction becomes apparent at pressures less than 10 atm. At pressures of a few tens of atmospheres, the rotational temperature of fullerenes coincides with their translational temperature.
Keywords
numerical modeling,
molecular dynamics,
fullerenes,
energyAuthors
Borodin Vladislav I. | Gazprom Transgaz Tomsk | borodingttgazprom@mail.ru |
Bubenchikov Mikhail A. | Tomsk State University | michael121@mail.ru |
Bubenchikov Aleksey M. | Tomsk State University | bubenchikov_am@mail.ru |
Mamontov Dmitriy V. | Tomsk State University | orevaore@mail.ru |
Timchenko Sergey V. | Tomsk State University | Timchenko@tsu.ru |
Всего: 5
References
Lifshitz C. C2 binding energy in C60 // International Journal of Mass Spectrometry. 2000. V. 198. P. 1-14.
Torrente I.F., Franke K.J., Pascual J.I. Spectroscopy of C60 single molecules: The role of screening on energy level alignment // Journal of Physics: Condensed Matter. 2008. V. 20. Art. 184001.
Kang S.J., Yi Y., Kim C.Y., Cho S.W., Noh M., Jeong K., Whang C.N. Energy level diagrams of C 60/pentacene/Au and pentacene/C 60/Au // Synthetic Metals. 2006. V. 156. P. 32-37.
Gorokhov D.A., Suris R.A., Cheianov V. Electron-energy-loss spectroscopy of the C60 mole cule // Physics Letters A. 1998. V. 223. P. 116-122.
Lee S., Nicholls R., Nguyen-Manh D., Pettifor D., Briggs G., Lazar S., Pankhurst D.A., Cockayne D.J.H. Electron energy loss spectra of C60 and C70 fullerenes // Chemical Physics Letters. 2005. V. 404. P. 206-211.
Tan Z., Kun N., Chen G., Zeng W., Zhuchen T., Ikram M., Zhang Q., Wang H., Sun L., Zhu X., Wu X., Ji H., Ruoff R., Zhu Y. Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C 60 Molecules to Obtain Superior Energy Storage // Advanced Materials. 2016. V. 29. Art. 1603414.
Johnson R.D., Yannoni C.S., Dorn H.C., Salem J.R., Bethune D. C60 Rotation in the Solid State: Dynamics of a Faceted Spherical Top // Science. 1992. V. 255. P. 1235-1238.
Kamitakahara W., Copley J., Cappelletti R., Rush J., Neumann D., Fischer J., Mccauley J., Smit A. Rotations, Vibrations and Structure in Solid C60: Investigations by Neutron Scattering // MRS Proceedings. 2011. V. 270.
Shen J.Q., He S. Geometric phases of electrons due to spin-rotation coupling in rotating C_{60} molecules // Phys. Rev. B. 2003. V. 68.
Olthof E.H.T., van der Avoird A., Wormer P.E.S. Vibration and rotation of CO in C60 and predicted infrared spectrum //j. Chem. Phys. 1996. V. 104. P. 832-847.
Афанасьева С.А., Бирюков Ю.А., Белов Н.Н. и др. Повышение эффективности высокоскоростного метания ударников с применением высокоэнергетических топлив с нанодисперсными наполнителями // Вестник Томского государственного университета. Математика и механика. 2012. № 2 (18). С. 67-79.
Крайнов А.Ю., Порязов В.А., Моисеева К.М. Скорость распространения пламени в аэровзвеси наноразмерного порошка алюминия // Вестник Томского государственного университета. Математика и механика. 2018. № 53. С. 95-106.
Ворожцов А.Б., Данилов П.А., Жуков И.А. и др. Влияние внешних воздействий на расплав и неметаллических наночастиц на структуру и механические характеристики легких сплавов на основе алюминия и магния // Вестник Томского государственного университета. Математика и механика. 2020. № 64. С. 91-107.
Андрющенко В.А., Рудяк В.Я. Самодиффузия молекул флюида в наноканалах // Вестник Томского государственного университета. Математика и механика. 2012. № 2. С. 63-66.
Рудяк В.Я., Андрющенко В.А. Молекулярно-динамическое моделирование разделения наножидкости с помощью наномембран // Вестник Томского государственного университета. Математика и механика. 2014. № 4. С. 88-94.