About the integral approach using the collocation method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 88. DOI: 10.17223/19988621/88/2

About the integral approach using the collocation method

The article describes a matrix method of polynomial Chebyshev approximation using an integral approach to construct a solution to a nonhomogeneous fourth-order differential equation with mixed boundary conditions of the first kind. The proposed method is based on the expansion of the fourth-order derivative of the desired function into a series in terms of Chebyshev polynomials of the first kind and the representation of the partial sum of this series as a product of matrices whose elements are, respectively, the Chebyshev polynomials and the coefficients in this expansion. In this paper, using analytical formulas for calculating integrals of Chebyshev polynomials, we obtain a representation of the desired function in terms of the product of the matrices defined above. The use of points of extrema and zeros of Chebyshev polynomials of the first kind as nodes, as well as the properties of the sums of products of Chebyshev polynomials at these points, made it possible to reduce the boundary value problem by the collocation method to a system of inhomogeneous linear algebraic equations with a sparse matrix of this system. It is shown that the solution constructed in this way satisfies the differential equation at all nodes, including the boundary ones, in contrast to the approximate solution obtained by approximating the exact solution in the form of a finite sum of the Chebyshev series. The effectiveness of the proposed method is demonstrated by considering a boundary value problem with a known analytical solution. The convergence analysis of the constructed solution is carried out.

Download file
Counter downloads: 7

Keywords

collocation method, Chebyshev polynomials of the first kind, inhomogeneous differential equations

Authors

NameOrganizationE-mail
Germider Oksana V.Northern (Arctic) Federal University named after M. V. Lomonosovo.germider@narfu.ru
Popov Vasilii N.Northern (Arctic) Federal University named after M. V. Lomonosovv.popov@narfu.ru
Всего: 2

References

Tac V., Rausch M.K., Costabal F.S., Tepole A.B. Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations // Computer Methods in Applied Mechanics and Engineering. 2023. V. 411. Art. 116046.
Nanshan M., Zhang N., Xun X., Cao J. Dynamical modeling for non-Gaussian data with high dimensional sparse ordinary differential equations // Computational Statistics & Data Analysis. 2022. V. 173. Art. 107483.
Khader M.M., Mahdy A.M.S., Shehata M.M. An Integral Collocation Approach Based on Le gendre Polynomials for Solving Riccati, Logistic and Delay Differential Equations // Applied Mathematics. 2014. V. 5. P. 2360-2369.
Gimeno J., Jorba A., Jorba-Cusco M., Miguel N., Zou M. Numerical integration of high-order variational equations of ODEs // Applied Mathematics and Computation. 2023. V. 442. Art. 127743. doi: j.amc.2022.127743.
Лун-Фу А.В., Бубенчиков М.А., Жамбаа С., Цыдыпов С.Г. Определение частот поперечных колебаний переходников и тупиковых ответвлений газопроводов // Вестник Томского государственного университета. Математика и механика. 2020. № 68. С. 95-105.
Mai-Duy N., Tanner R.I. A spectral collocation method based on integrated Chebyshev poly nomials for two-dimensional biharmonic boundary-value problems // Journal of Computational and Applied Mathematics. 2007. V. 201. P. 30-47.
Mai-Duy N., See H., Tran-Cong T. A spectral collocation technique based on integrated Che byshev polynomials for biharmonic problems in irregular domains // Appl. Math. Model. 2009. V. 33 (1). P. 284-299.
Shao W., Wu X. An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations // Appl. Math. Model. 2015. V. 39 (9). P. 2554-2569.
Baseri A., Abbasbandy S., Babolian E. A collocation method for fractional diffusion equation in a long time with Chebyshev functions // Applied Mathematics and Computation. 2018. V. 322. P. 55-65.
Mason J., Handscomb D. Chebyshev polynomials. Florida: CRC Press, 2003.
Liu S., Trenkler G. Hadamard, Khatri-Rao, Kronecker and other matrix products // International Journal of Information and Systems Sciences. 2008. V. 4 (1). P. 160-177. Corpus ID: 36767622.
Ibrahimoglu B.A. Lebesgue functions and Lebesgue constants in polynomial interpolation // Journal of Inequalities and Applications. 2016. V. 93. P. 1-15.
McCabe J.H., Phillips G.M. On a certain class of Lebesgue constants // BIT. 1973. Vol. 13. P. 434-442.
Гермидер О.В., Попов В.Н. О решении модельного кинетического уравнения ES // Чебышевский сборник. 2022. Т. 23, № 3. С. 37-49.
Corless R.M., Jeffrey D.J. The Turing factorization of a rectangular matrix // ACM SIGSAM Bulletin. 1997. V. 31 (3). P. 20-30.
Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987. 598 с.
Антюфеев В.С. Вероятностная оценка числа обусловленности матрицы // Сибирский журнал чистой и прикладной математики. 2018. Т. 18, № 1. С. 28-34. 10.17377/ PAM.2018.18.3.
Голушко С.К., Идимешев С.В., Шапеев В.П. Метод коллокаций и наименьших невязок в приложении к задачам механики изотропных пластин // Вычислительные технологии. 2013. Т. 18, № 6. С. 31-43.
Шапеев В.П., Брындин Л.С., Беляев В.А. hp-Вариант метода коллокации и наименьших квадратов с интегральными коллокациями решения бигармонического уравнения // Вестник Самарского государственного технического университета. Сер. Физикоматематические науки. 2022. Т. 26, № 3. С. 556-572.
Chen G., Li Zh., Lin P. A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow // Adv.Comput. Math. 2008. V. 29. P. 113-133.
 About the integral approach using the collocation method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 88. DOI: 10.17223/19988621/88/2

About the integral approach using the collocation method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 88. DOI: 10.17223/19988621/88/2

Download full-text version
Counter downloads: 142