A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 89. DOI: 10.17223/19988621/89/1

A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part

In this paper, the second initial-boundary value problem with homogeneous boundary conditions for a one-dimensional modified wave equation is considered. The modification consists in replacing the coefficient at the second spatial derivative with an integral load. In our case, it is a power function of the integral of the squared modulus of the derivative of the equation solution with respect to the spatial variable. Equations with such a load are associated with some practically important hyperbolic equations with a power nonlinearity in the main part. This makes it possible to use previously found solutions of loaded problems to start the process of successive approximation to solutions of nonlinear problems reduced to them. In this case, with respect to the original nonlinear equation, the loaded equation contains a weakened nonlinearity. Linearization of the loaded equation makes it possible to find its approximate solution. The article considers three cases of the integral load. It is the squared norm of the derivative of the solution with respect to x in the space L2 in natural, inverse to natural, and two integer negative powers. The corresponding a priori inequalities are established. Their right-hand side is used to pass to linearized equations. Examples of linearization by this method of wave equations with an integral load in the main part are given.

Download file
Counter downloads: 15

Keywords

a priori estimation, linearization, integral load, hyperbolic equation

Authors

NameOrganizationE-mail
Boziev Oleg L.Kabardino-Balkarian State University; Institute of Computer Science and Problems of Regional Management of Kabardino-Balkarian Science Center of the Russian Academy of Sciencesboziev@yandex.ru
Всего: 1

References

Бозиев О.Л. Априорные оценки производных решений одномерных неоднородных уравнений теплопроводности с интегральной нагрузкой в главной части // Вестник Южно-Уральского государственного университета. Сер. Математика, физика, механика. 2023. Т. 15, № 2. С. 5-13.
Филатов А.Н., Шарова Л.В. Интегральные неравенства и теория нелинейных колебаний. М.: Наука, 1976. 151 с.
Бозиев О.Л. О линеаризации гиперболических уравнений с интегральной нагрузкой в главной части с помощью априорной оценки их решений // Вестник Томского государственного университета. Математика и механика. 2022. № 80. С. 16-25.
Бозиев О.Л. Решение нелинейного гиперболического уравнения приближенно-аналитическим методом // Вестник Томского государственного университета. Математика и механика. 2018. № 51. С. 5-14.
Бозиев О.Л. Приближенное решение нагруженного гиперболического уравнения с однородными краевыми условиями // Вестник Южноуральского государственного университета. Сер. Математика, физика, механика. 2016. Т. 8, № 2. С. 14-18.
Ono K. Global solvability for mildly degenerate Kirchhoff type dissipative wave equations in Bounded Domains //j. Math. Tokushima Univ. 2021. V. 55. P. 11-18.
Ngoc L.T.P., Long N.T. Linear Approximation and Asymptotic Expansion of Solutions in Many Small Parameters for a Nonlinear Kirchhoff Wave Equation with Mixed Nonhomogeneous Conditions // Acta Appl Math. 2010. V. 112. P. 137-169.
Nishihara K. Exponential decay of solutions of some quasilinear hyperbolic equations with linear damping // Nonlinear Analysis: Theory, Methods & Applications. 1984. V. 8 (6). P. 623-636.
Похожаев С.И. Об одном квазилинейном гиперболическом уравнении Кирхгофа // Дифференциальные уравнения. 1985. Т. 21, № 1. С. 101-108.
Похожаев С.И. Об одном классе квазилинейных гиперболических уравнений // Мате матический сборник. 1975. Т. 96 (138), № 1. С. 152-166.
Dickey R.W. Infinite systems of nonlinear oscillation equations related to the string // Proc. Amer. Math. Soc. 1969. V. 23. P. 459-468.
Crippa H.R. On local solutions of some mildly degenerate Hyperbolic equations // Nonlinear Analysis: Theory, Methods & Applications. 1993. V. 21 (8). P. 565-574.
Frota C.L., Medeiros L.A., Vicente A. Wave equation in domains with nonlocally reacting boundary // Differential and Integral Equations. 2011. V. 17. P. 1001 -1020.
Woinowsky-Krieger S. The effect of axial forces on the vibrations of hinged bars //j. Appl. Mech. 1950. V. 17. P. 35-36.
Бернштейн С.Н. Об одном классе функциональных уравнений с частными производными // Известия АН СССР. Сер. математическая. 1940. Т. 4, вып. 1. С. 17-26.
 A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 89. DOI: 10.17223/19988621/89/1

A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 89. DOI: 10.17223/19988621/89/1

Download full-text version
Counter downloads: 137