Mechanical behavior of titanium alloys in a dynamic punch test
In this paper, the deformation and fracture of Ti-5Al-2.5Sn alloy in complex stress states under biaxial tension at strain rates of up to several hundred per second are studied. Such loading conditions are provided during high-speed punch tests for thin plates. Samples of titanium alloy plates are punched with a hemispherical indenter, which is 20 mm in diameter, at velocities of 10, 5.0, 1.0, and 0.5 m/s with simultaneous recording of the punching forces and maximum deflection and video recording of the sample surface at a speed of 13.000 frames/s. Numerical simulation of punching tests is performed at punching velocities ranging from 0.5 to 10 m/s to validate the constitutive relationships and damage development kinetics. To describe the plastic flow and fracture of Ti-5Al-2.5Sn alloy in the range of strain rates from 0.001 to 1000 s-1, the micromechanical damage model coupled with a model of the viscoplastic mechanical behavior of the material is used. The simulated crack shape and deflections are found to be similar to those obtained experimentally. Thus, dynamic bursting testing allows the validation of models of damage kinetics in complex stress states.
Keywords
titanium alloys,
dynamic punch test,
high strain rates,
complex stress stateAuthors
Skripnyak Vladimir V. | Tomsk State University | skrp2012@yandex.ru |
Skripnyak Vladimir A. | Tomsk State University | skrp2006@yandex.ru |
Всего: 2
References
Skripnyak V.V., Skripnyak V.A. Mechanical behavior of alpha titanium alloys at high strain rates, elevated temperature, and under stress triaxiality // Metals. 2022. V. 12. Art. 1300.
Steinberg D.J., Cochran S.G., Guinan M.W. A constitutive model for metals applicable at high-strain rate // Journal of Applied Physics. 1980. V. 51. P. 1498-1504.
Zhang J., Zhao Y., Hixson R.S., Gray G.T., Wang L., Utsumi W., Takanori H. Thermal equations of state for titanium obtained by high pressure-temperature diffraction studies // Physical Review B. 2008. V. 78. Art. 054119.
Dabboussi W., Nemes J.A. Modeling of ductile fracture using the dynamic punch test // International Journal of Materials Science. 2005. V. 47. P. 1282-1299.
Sirvin Q., Velay V., Bonnaire R., Penazzi L. Mechanical behaviour modelling and finite element simulation of simple part of Ti-6Al-4V sheet under hot/warm stamping conditions // Journal of Manufacturing Processes. 2019. V. 38. P. 472-482.
Li H., Chen S.-F., Zhang S.-H., Xu Y., Song H.-W. Deformation characteristics, formability and springback control of Titanium alloy sheet at room temperature: a review // Materials. 2022. V. 15. Art. 5586.
Li X., Guo G., Xiao J., Song N., Li D. Constitutive modeling and the effects of strain-rate and temperature on the formability of Ti-6Al-4V alloy sheet // Materials & Design. 2014. V. 55. P. 325-334.
Skripnyak V.V., Iohim K. V., Skripnyak V.A. Mechanical behavior of titanium alloys at moderate strain rates characterized by the punch test technique // Materials. 2023. V. 16. Art. 416. 10.3390/ ma16010416.
Spulak N., Seidt J., Gilat A. Ductile fracture of 2024 aluminum under unequal biaxial in-plane tension and out-of-plane compression // Mechanics of Materials. 2024. V. 179. Art. 104585.
Hammer J.T., Liutkus T.J., Seidt J.D., Gilat A. Using Digital Image Correlation (DIC) in Dynamic Punch Tests // Experimental Mechanics. 2014. V. 55 (1). P. 201-210. 10.1007/ s11340-014-9924-9.
Скрипняк В.В., Иохим К.В., Скрипняк В.А. Локализация пластической деформации технически чистого титана в сложном напряженном состоянии при высокоскоростном растяжении // Вестник Томского государственного университета. Математика и механика, 2021. № 70. С. 89-102.
Skripnyak V. V., Skripnyak E.G., Skripnyak V.A. Fracture of titanium alloys at high strain rates and under stress triaxiality // Metals. 2020. V. 10. Art. 305.
Ghosh A.K., Hamilton C.H. Superplastic forming and diffusion bonding of titanium alloys // Defense Science Journal. 1986. V. 36. P. 153-177.
Tabie V.M., Li C., Saifu W., Li J., Xu X. Mechanical properties of near alpha titanium alloys for high-temperature applications - a review // Aircraft Engineering and Aerospace Technology. 2020. V. 92. P. 521-540.
Lu Z., Zhang X., Ji W., Wei W., Yao C., Han D. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures // Materials Science and Engineering: A. 2021. V. 818. Art. 141380.
Tan M.J., Chen G.W., Thiruvarudchelvan S. High temperature deformation in Ti-5Al-2.5Sn alloy // Journal of Materials Processing Technology. 2007. V. 192-193. P. 434-438.
Jayaprakash M., Ping D.H., Yamabe-Mitarai Y. Enhanced yielding strength of near-а Ti-Al- Zr-Sn high temperature alloys // Materials Science and Engineering: A. 2015. V. 625. P. 131-139.