Effective mechanical parameters of bone tissue samples for the selection of individual osteoimplants
The results of the stress-strain state of model bone meso-volumes containing cancellous and cortical bone tissue together and micro-volumes of cortical and cancellous bone tissue separately under uniaxial compression are presented. Unconventional effective mechanical parameters, serving as a relative measure of the deformation response manifestation for the considered meso- or micro-volume of bone in three perpendicular directions, and the effective modulus of elasticity under axial compression are determined. It has been revealed that the micro- and meso-volumes of bone tissue with different structures and compositions may differ in the pattern of stress and strain distribution, but have similar elastic moduli, and vice versa. It has been shown that the micro- and meso-volumes of bone tissue samples with different structures and compositions, having the same distribution of stresses and strains, are characterized by the same values of the introduced effective mechanical parameters. It is proposed to use effective mechanical characteristics and longitudinal modulus of elasticity during the selection and development of individual osteoimplants. When installing an implant into the bone, it is suggested to coordinate the orthotropic axes of the implant and the replaced bone site to maintain a favorable mechanical state of the bone consistent with that before implant installation.
Keywords
stress-strain state,
effective mechanical parameters,
cortical bone tissue,
cancellous bone tissue,
computer modeling,
osteoimplantsAuthors
Chaykovskaya Tatyana V. | Tomsk State University | kolmakova@ftf.tsu.ru |
Всего: 1
References
Сагаловски С., Шенерт М. Клеточно-молекулярные механизмы развития асептической нестабильности эндопротеза тазобедренного сустава // Травма. 2012. T. 13, № 1. С. 153-160.
Goldman H.M., Bromage T.G. Preferred collagen fiber orientation in the human mid-shaft femur // The Anatomical Record Part A. 2003. V. 272A (1). P. 434-445.
Avrunin A.S., Tses E.A. The birth of a new scientific field - biomechanics of the skeleton. Julius Wolff and his work "Das Gesetz der Transformation der Knochen" // History of Medicine. 2016. V. 3 (4). P. 447-461.
Mellon S.J., Tanner K.E. Bone and its adaptation to mechanical loading: a review // Interna tional Materials Reviews. 2012. V. 57 (5). P. 235-255.
Keaveny T.M., Morgan E.F., Yeh O.C. Biomedical Engineering and Design Handbook / ed. by M. Kutz. New York: McGraw-Hill, 2009.
Cowin S.C. Bone Mechanics Handbook. 2nd ed. New York: CRC Press, 2001. 978 p.
Rosa N., Moura M.F.S.F., Olhero S., Simoes R., Magalhaes F.D., Marques A.T., Ferreira J.P.S., Reis A.R., Carvalho M., Parente M. Bone: An Outstanding Composite Material // Applied Sciences. 2022. V. 12 (7). Art. 3381. P. 1-15.
Novitskaya E., Chen P.Y, Hamed E., Li J., Lubarda V.A., Jasiuk I., Mckittrick J. Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review // Theoretical and Applied Mechanics. 2011. V. 38 (3). P. 209-297.
Orava H., Huang L., Ojanen S.P., Makela J.T.A., Finnila M.A.J., Saarakkala S., Herzog W., Korhonen R.K., Toyras J., Tanska P. Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses - a finite element study // Journal of the Mechanical Behavior of Biomedical Materials. 2022. V. 128. Art. 105129. P. 1-15.
Lee T., Garlapati R.R., Lam K., Lee P.V., Chung Y.S., Choi J.B., Vincent T.B., Das De S. Fast tool evaluation of iliac crest tissue elastic properties using the reduced-basis methods // Journal of Biomechanical Engineering. 2010. V. 132. Art. 121009. P. 1-8.
Xi L., Barbieri E., Wang P., Wu W., Gupta H. Separating effects of bone-quality changes at multiple scales in steroid-induced osteoporosis: Combining multiscale experimental and modelling approaches // Mechanics of Materials. 2021. V. 157. Art. 103821. P. 1-15.
Lovrenic-Jugovic M., Tonkovic Z., Skozrit I. Experimental and numerical investigation of cyclic creep and recovery behavior of bovine cortical bone // Mechanics of Materials. 2020. V. 146. Art. 103407. P. 1-14.
Lubarda V.A., Novitskaya E.E., Kittricka J.Mc., Bodde S.G., Chen P.Y. Elastic properties of cancellous bone in terms of elastic properties of its mineral and protein phases with application to their osteoporotic degradation // Mechanics of Materials. 2012. V. 44. P. 139-150.
Белов Н.Н., Югов Н.Т., Ищенко А.Н., Афанасьева С.А., Хабибуллин М.В., Югов А.А., Стуканов А.Л. Математическое моделирование разрушения костной ткани при динамическом нагружении // Вестник Томского государственного университета. Математика и механика. 2010. № 2 (10). С. 28-37.
Kolmakova T. V. Computer-aided study of the mechanical behavior of the jaw bone fragments under uniaxial compression // AIP Conference Proceedings. 2016. V. 1760. Art. 020030. P. 1-4.
Kolmakova T.Computer modeling of the structure of the cortical and trabecular bone tissue // AIP Conference Proceedings. 2015. V. 1683. Art. 020087. P. 1-4.
Lastovkina Y.N., Kolmakova T. V.Computer modelling of the microstructure of the trabecular bone fragments for the study of stress-strain state // IOP Publishing: Journal of Physics: Conference Series. 2016. V. 769. Art. 012020. P. 1-4.
Марченко Е.С., Чайковская Т.В. Исследование напряженно-деформированного состояния губчатой костной ткани при одноосном сжатии // Вестник Томского государственного университета. Математика и механика. 2023. № 83. С. 127-142.
Кристенсен Р. Введение в механику композитов / пер. с англ. А.И. Бейля, Н.П. Жмудя; под ред. Ю.М. Тарнопольского. М.: Мир, 1982. 334 с.
Колмакова Т.В. Моделирование структуры, расчет напряженно-деформированного состояния, механических свойств костных тканей и управление характеристиками остеоимплантатов: дис. д-pа физ.-мат. наук. Томск, 2013. 273 c.
Фигурска М. Структура компактной костной ткани // Российский журнал биомеханики. 2007. T. 11, № 3. С. 28-38.
Fedida R., Yosibash Z., Milgrom C., Joskowicz L. Femur mechanical simulation using high-order FE analysis with continuous mechanical properties // 2nd International Conference on Computational Bioengineering; Lisbon, Portugal, 2005.