Development and verification of the least-squares collocation method with seventh degree polynomials for the biharmonic equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/1

Development and verification of the least-squares collocation method with seventh degree polynomials for the biharmonic equation

A new version of the least-squares collocation method (C3-МКНК7) with seventh degree polynomials is proposed and implemented. The method has continuity up to the third derivatives of the piecewise polynomial solution in the sense of least squares. This is achieved by using the values of the solution and its derivatives at the vertices of the grid cells as unknown terms. The C3-МКНК7 is fundamentally different from previous versions of the LSCM in the absence of matching conditions. They explicitly require continuity of the solution and its derivatives at several points on the boundaries between neighboring cells. To solve the problem in a domain with a curved boundary a grid is constructed with rectangular cells. The solution of small irregular cells is continued from neighboring independent ones. Verification of the C3-МКНК7 is carried out by solving two-dimensional boundary value problems for a biharmonic equation in a square and in domain with the curvilinear boundary. The condition numbers of a global matrix and transition matrices from values at nodes to coefficients of polynomial expansion are studied. The advantages of the C3-МКНК7 over previous versions of the LSCM are shown.

Download file
Counter downloads: 5

Keywords

least-squares collocation method, piecewise polynomials, automatic solutioncontinuity, biharmonic equation, plate bending

Authors

NameOrganizationE-mail
Bryndin Luka S.Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciencesbryndin-1996@mail.ru
Всего: 1

References

Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Физматгиз, 1996. 625 с.
Chen G., Li Z., Lin P. A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow // Advances in Computational Mathematics. 2007. V. 29, № 2. P. 113-133.
Shao W., Wu X., Chen S. Chebyshev tau meshless method based on the integration-differentiation for biharmonic-type equations on irregular domain // Engineering Analysis with Boundary Elements. 2012. V. 36, № 12. P. 1787-1798.
Беляев В.A., Брындин Л.С., Голушко С.К., Семисалов Б.В., Шапеев В.П. H-, p- и hp-варианты метода коллокации и наименьших квадратов для решения краевых задач для бигармонического уравнения в нерегулярных областях и их приложения // Журнал вычислительной математики и математической физики. 2022. Т. 62, № 4. С. 531-552.
Брындин Л.С., Беляев В.А., Шапеев В.П. Разработка и верификация упрощенного hp-варианта метода коллокации и наименьших квадратов для нерегулярных областей // Вестник Южно-Уральского государственного университета. Сер. Математическое моделирование и программирование. 2023. Т. 16, № 3. С. 35-50.
Ben-Artzi M., Croisille J.P., Fishelov D. An Embedded Compact Scheme for Biharmonic Problems in Irregular Domains // Advanced Computing in Industrial Mathematics: 11th Annual Meeting of the Bulgarian Section of SIAM. Cham: Springer, 2018. V. 728. P. 11-23.
Bialecki B., Fairweather G., Karageorghis A., Maack J. A quadratic spline collocation method for the Dirichlet biharmonic problem // Numerical Algorithms. 2019. V. 83. P. 165-199.
Guo H., Zhang Z., Zou Q. A C0 Linear Finite Element Method for Biharmonic Problems // Journal of Scientific Computing. 2018. V. 74, № 3. P. 1397-1422.
Schillinger D., Evans J.A., Reali A., Scott M.A., Hughes T.J.R. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations // Computer Methods in Applied Mechanics and Engineering. 2013. V. 267. P. 170-232.
Ramsak M., Skerget L. A subdomain boundary element method for high-Reynolds laminar flow using stream function-vorticity formulation // International Journal for Numerical Methods in Fluids. 2004. V. 46, № 8. P. 815-847.
Голушко С.К., Идимешев С.В., Шапеев В.П. Метод коллокаций и наименьших невязок в приложении к задачам механики изотропных пластин // Вычислительные технологии. 2013. Т. 18, № 6. С. 31-43.
Исаев В.И., Шапеев В.П., Еремин С.А. Исследование свойств метода коллокации и наименьших квадратов решения краевых задач для уравнения Пуассона и уравнений Навье-Стокса // Вычислительные технологии. 2007. Т. 12, № 3. С. 53-70.
Ильин В.П., Кныш Д.В. Параллельные методы декомпозиции в пространствах следов // Вычислительные методы и программирование. 2011. Т. 12, № 1. С. 110-119.
Алексидзе М.А. Решение граничных задач методом разложения по неортогональным функциям. М.: Наука, 1978. 352 с.
Shao W., Wu X. An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations // Applied Mathematical Modelling. 2015. V. 39, № 9. P. 2554-2569.
Fairweather G., Karageorghis A., Maack J.Compact optimal quadratic spline collocation methods for Poisson and Helmholtz problems: formulation and numerical verification // Journal of Computational Physics. 2010. V. 230, № 8. P. 2880-2895.
Davis T.A. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization // ACM Transactions on Mathematical Software. 2011. V. 38, № 1. P. 8:1-8:22.
Ike C.C. Mathematical solutions for the flexural analysis of Mindlin's first order shear deformable circular plate // Mathematical Models in Engineering. 2018. V. 4, № 2. P. 50-72.
Mai-Duy N., See H., Tran-Cong T. A spectral collocation technique based on integrated Chebyshev polynomials for biharmonic problems in irregular domains // Applied Mathematical Modelling. 2009. V. 33, № 1. P. 284-299.
 Development and verification of the least-squares collocation method with seventh degree polynomials for the biharmonic equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/1

Development and verification of the least-squares collocation method with seventh degree polynomials for the biharmonic equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/1

Download full-text version
Counter downloads: 152