Nilpotent, nil-good, and nil-clean formal matrices over residue class rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/3

Nilpotent, nil-good, and nil-clean formal matrices over residue class rings

Let us recall some classes of rings. A ring R is said to be fc-nil-clean if each element can be written as a sum of a nilpotent and k idempotents. A ring R is said to be fine if each non-zero element can be written as a sum of a unit and a nilpotent. A ring R is called nil-good if every element is a nilpotent or a sum of a nilpotent and a unit. And, finally, ring R is called nil-good clean if every element is a sum of a nilpotent, an idempotent, and a unit. In this paper, we continue our work on additive problems in formal matrix rings over residue class rings. We have found necessary and sufficient conditions for the nilpotency of a formal matrix over residue class rings. After that we have shown that a ring of such matrices is (p -1)-nil-clean and nil-good clean. Also, answering the question posed in the previous article of the second co-author, we prove that a ring of formal matrices over residue rings is never nil-good, and, therefore, not fine.

Download file
Counter downloads: 5

Keywords

formal matrix ring, nilpotent formal matrix, nil-good ring, fine ring, nil-clean ring, nil-good clean ring, Morita context ring

Authors

NameOrganizationE-mail
Elfimova Anastasia M.Tomsk State Universityelfimova.nastya@bk.ru
Norbosambuev Tsyrendorzhi D.Tomsk State Universitynstsddts@yandex.ru
Podkorytov Maxim V.Tomsk State Universitymaximthegreate@yandex.ru
Всего: 3

References

Morita K. Duality for modules and its applications to the theory of rings with minimum condition // Sci. Rep. Tokyo Kyoiku Daigaku. Sect. A. 1958. V. 6. P. 83-142.
Loustaunau P., Shapiro J. Morita contexts // Non-Commutative Ring Theory. Springer, 1990. P. 80-92. (Lecture Notes in Mathematics; v. 1448).
Степанова А.Ю., Тимошенко Е.А. Матричное представление эндоморфизмов примарных групп малых рангов // Вестник Томского государственного университета. Математика и механика. 2021. № 74. С. 30-42.
Норбосамбуев Ц.Д. Хорошие кольца формальных матриц над кольцами вычетов // Вестник Томского государственного университета. Математика и механика. 2023. № 85. С. 32-42.
Крылов П.А., Туганбаев А.А. Кольца формальных матриц и модули над ними. М.: МЦНМО, 2017.
Крылов П.А., Туганбаев А.А. Формальные матрицы и их определители // Фундаментальная и прикладная математика. 2014. № 1 (19). С. 65-119.
Крылов П.А. Определители обобщенных матриц порядка 2 // Фундаментальная и прикладная математика. 2015. № 5 (20). С. 95-112.
Climent J.-J., Navarro P.R., Tortosa L. Key exchange protocols over noncommutative rings. The case of End(Zp x Zp2) // International Journal of Computer Mathematics. 2012. V. 89. P. 1753-1763.
Climent J.-J., López-Ramos J.A. Public key protocols over the ring Ep(m) // Advances in Mathe matics of Communications. 2016. V. 10. P. 861-870.
Long D.T., Thu D.T., Thuc D.N. A Bergman ring based cryptosystem analogue of RSA // International Conference on IT Convergence and Security, ICITCS 2013. 10.1109/ ICITCS.2013.6717769.
Farida N.J., Irawati. On the arithmetic of endomorphism ring End (Zp2 x Zp) and its RSA variants // South East Asian Journal of Mathematics and Mathematical Sciences. 2023. V. 19 (2). P. 53-64.
Норбосамбуев Ц.Д., Тимошенко Е.А. О k-ниль-хороших кольцах формальных матриц // Вестник Томского государственного университета. Математика и механика. 2022. № 77. С. 17-26.
 Nilpotent, nil-good, and nil-clean formal matrices over residue class rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/3

Nilpotent, nil-good, and nil-clean formal matrices over residue class rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/3

Download full-text version
Counter downloads: 152