On the trajectories of bodies in non-inertial reference frames. Part II | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/5

On the trajectories of bodies in non-inertial reference frames. Part II

This paper provides a detailed solution to the problem of determining the trajectories of body motion in non-inertial frames of reference. The problem is solved in the basis τ, n, b moving along a given spatial curve. The orts of the basis are the vectors of the tangent τ, principal normal n, and binormal b to the curve. The motion of the noninertial frame of reference completely determines the vector of translational motion along the curve R0(t) with velocity v(t) = Ṙ0(t) τ and the Darboux vector of angular rotation ω = χτ + Kb . The curvature K and torsion χ are specified by the curve equation. Vectors τ, n, b are bound by the Frenet-Serret formulas. A system of second-order linear differential equations describing the free fall of a body from the point of view of an observer located in the basis T, n, b for cylindrical, hyperbolic, and conical helical lines is numerically analyzed. The corresponding trajectories of the bodies are plotted by computer modeling methods. A significant difference is observed in the trajectories of motion of one and the same body in the inertial and non-inertial frames of reference.

Download file
Counter downloads: 3

Keywords

non-inertial reference frames, accompanying trihedron curve, curvature, torsion

Authors

NameOrganizationE-mail
Bogdanova Sof’ya B.Moscow Aviation Institutesonjaf@list.ru
Gladkov Sergey O.Moscow Aviation Institutesglad51@mail.ru
Всего: 2

References

Богданова С.Б., Гладков С.О. О траекториях тел в неинерциальных системах отсчета // Вестник Томского государственного университета. Математика и механика. 2023. № 84. С. 68-80.
Базылев В.Т., Дуничев К.И. Геометрия. М.: Просвещение, 1975. Т. 2: Проективное пространство и методы изображений основания геометрии. Элементы топологии. Линии и поверхности в евклидовом пространстве. 366 с.
Ландау Л.Д., Лившиц Е.М. Курс теоретической физики. Механика. М.: Наука, 1988. 215 с.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М.: Физматлит, 1962. Т. 1. 607 с.
Смирнов В.И. Курс высшей математики. М.: Физматлит, 1967. Т. 2. 628 с.
Норден А.П. Краткий курс дифференциальной геометрии. М.: Физматгиз, 1958. 244 с.
Выгодский М.Я. Дифференциальная геометрия. М.: Гос. изд-во техн.-теорет. лит., 1949. 512 с.
Подобная Е.Д., Попова О.П., Глазачев Д.О. Оценка траектории метеороидов по марсианским кластерам // Вестник Томского государственного университета. Математика и механика. 2022. № 80. С. 97-107.
Voytik V.V. On a special transformation to a non-inertial, radially rigid reference frame // Gravitation and Cosmology. 2013. V. 19, № 3. P. 193-200.
Perepelkin E.E., Sadovnikov B.I., Inozemtseva N.G. The task of the relativistic oscillator in a non-inertial frame of reference // European Journal of Physics. 2016. V. 37, № 5. Art. 055604.
 On the trajectories of bodies in non-inertial reference frames. Part II | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/5

On the trajectories of bodies in non-inertial reference frames. Part II | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/5

Download full-text version
Counter downloads: 152