The effect of initial stresses on sound wave propagation in hypoelastic anisotropic materials
A linearized equation for the propagation of acoustic waves in bodies with preliminary finite deformations and initial stresses is obtained for hypoelastic materials. The equation is written in terms of the velocity field, which leads to perturbations of the initial configuration of the medium. The formula for a symmetric acoustic tensor is written for plane monochromatic waves. It is shown that if a plane wave propagates along one of the anisotropy axes in cubic material, then the normal stresses in the plane of the wave front affect the phase propagation velocities of both longitudinal and transverse waves. The normal stresses acting perpendicular to the wave normal vector affect only the magnitude of the phase velocity of the transverse wave polarized along the stress direction. The shear stresses acting in the plane of the wave front have an effect on the propagation velocities of quasi-longitudinal and quasi-transverse waves. The shear stresses acting in the plane perpendicular to the wave front affect only the phase velocities of transverse waves. Analysis of the effect of initial stress on wave propagation in an isotropic material allowed revealing the occurrence of anisotropy in the acoustic properties of the medium and to describe shear wave splitting.
Keywords
hypoelasicity,
anisotropy,
finite strains,
dynamic equations,
acoustic waves,
initial stresses,
phase velocitiesAuthors
Sokolova Marina Yu. | Tula State University | m.u.sokolova@gmail.com |
Markin Aleksey A. | Tula State University | markin-nikram@yandex.ru |
Всего: 2
References
Truesdell C. General and exact theory of waves in finite elastic strain // Arch. Ratio. Mech. Anal. 1961. V. 8, № 1. P. 263-296.
Pau A., Vestroni F. The role of material and geometric nonlinearities in acoustoelasticity // Wave Motion. 2019. V. 86. Р. 79-90.
Yang H., Fu L-Y., Fu B-Y., Muller T.M. Acoustoelastic FD simulation of elastic wave propagation in prestressed media // Front. Earth Sci. 2022. V. 10. Art. 886920.
Kolpakov A.G., Andrianov I.V., Rakin S.I. On the influence of initial stresses on the velocity of elastic waves in composites // Computation. 2023. V. 11, № 15. Р. 1-19.
Kube C.M. Scattering of harmonic waves from a nonlinear elastic inclusion //j. Acoust. Soc. Am. 2017. V. 141, № 6. Р. 4756-4767.
Domanski W., Jemiolo S., Franus A. Propagation and interaction of weakly nonlinear plane waves in transversely isotropic elastic materials //j. Eng. Math. 2021. V. 127, № 8. Р. 1-15.
Rushchitsky J.J. Nonlinear plane waves in hypoelastic materials // Nonlinear elastic waves in materials. Foundations of Engineering Mechanics. Cham: Springer, 2014.
Rushchitsky J.J. On the types and number of plane waves in hypoelastic materials // International Applied Mechanics. 2005. V. 41, № 11. P. 1288-1298.
Demidov V.N. Acoustic properties of isotropic hypoelastic materials with residual technological stresses // Key Engineering Materials. 2016. V. 712. P. 384-389.
Демидов В.Н. О расщеплении волн сдвига в изотропных гипоупругих материалах // Физическая мезомеханика. 2000. Т. 3, № 2. С. 15-36.
Коробов А.И., Кокшайский А.И., Михалев Е.С., Одина Н.И., Ширгина Н.В. Исследования упругих свойств полимера PLA статическими и ультразвуковыми методами // Акустический журнал. 2021. Т. 67, № 4. С. 387-394.
Telichko A.V., Erohin S.V., Kvashnin G.M., Sorokin P.B., Sorokin B.P., Blank V.D. Diamond's third-order elastic constants: ab initio calculations and experimental investigation //j. Mater. Sci. 2017. V. 52. Р. 3447-3456.
Лурье А.И. Нелинейная теория упругости. М.: Наука, Гл. ред. физ.-мат. лит., 1980. 512 с.
Haupt P., Pao Y-H., Hutter K. Theory of incremental motion in a body with initial elasto-plastic deformation //j. Elasticity. 1992. V. 28. P. 93-221.
Роменский Е.И., Лысь Е.В., Чеверда В.А., Эпов М.И. Динамика деформирования упругой среды с начальными напряжениями // Прикладная механика и техническая физика. 2017. Т. 58, № 5. С. 178-189.
Маркин А.А., Соколова М.Ю. Термомеханика упругопластического деформирования. М.: Физматлит, 2013. 320 с.
Соколова М.Ю., Христич Д.В. Конечные деформации нелинейно упругих анизотропных материалов // Вестник Томского государственного университета. Математика и механика. 2021. № 70. С. 103-116.
Соколова М.Ю., Христич Д.В. Об обращении нелинейных определяющих соотношений для гиперупругих анизотропных материалов // Вестник Томского государственного университета. Математика и механика. 2023. № 85. С. 157-167.