Effect of non-axisymmetric inertial waves on the steady fluid circulation in a rotating cylinder | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/13

Effect of non-axisymmetric inertial waves on the steady fluid circulation in a rotating cylinder

Non-axisymmetric inertial waves in a rotating cylindrical cavity are studied experimentally. To maintain the wave motion, the cavity rotation rate is periodically changed according to the harmonic law (libration). Three different regimes have been found: non-resonant traveling wave, inertial mode resonance, and resonant traveling wave. In the first case, the pulsating flow represents a set of individual wave beams emitted from the cavity corners. The reflection of beams from the cavity sidewall induces steady circulation in the dynamic boundary layer, where the direction of the circulation is determined by the direction of wave front propagation. The second regime resembles standing waves in the axial section of the cavity. The fluid oscillations within the cavity also produce a steady flow with a structure specified by the axial wavenumber of the mode. Finally, the third regime is characterized by alternate excitation of two axisymmetric modes or one non-axisymmetric mode with an axisymmetric mode. In this case, the propagation of the wave front in the form of a traveling wave is a result of the interaction of two modes with different wave numbers. At the same time, the steady flow structure becomes more complex: the waves converging (diverging) to each other induce a system of concordantly rotating steady vortices near the sidewall.

Download file
Counter downloads: 4

Keywords

rotation, libration, inertial waves, inertial modes, steady flows

Authors

NameOrganizationE-mail
Shiryaeva Mariya A.Perm State Humanitarian Pedagogical Universityshiryaeva_ma@pspu.ru
Subbotin Stanislav V.Perm State Humanitarian Pedagogical Universitysubbotin_sv@pspu.ru
Всего: 2

References

Гринспен Х. Теория вращающихся жидкостей. Л.: Гидрометеоиздат, 1975. 304 с.
Messio L., Morize C., Rabaud M., Moisy F. Experimental observation using particle image velocimetry of inertial waves in a rotating fluid // Experiment. Fluids. 2008. V. 44. P. 519-528.
Boisson J., Lamriben C., Maas L.R.M., Cortet P.P., Moisy F. Inertial waves and modes excited by the libration of a rotating cube // Phys. Fluids. 2012. V. 24 (7). Art. 076602.
Borcia I.D., Abouzar G.V., Harlander U. Inertial wave mode excitation in a rotating annulus with partially librating boundaries // Fluid Dyn. Res. 2014. V. 46. Art. 041423.
Maas L.R.M., Benielli D., Sommeria J., Lam F.P.A. Observation of an internal wave attractor in a confined, stably stratified fluid // Nature. 1997. V. 388. P. 557-561.
Manders A.M.M., Maas L.R.M. Observations of inertial waves in a rectangular basin with one sloping boundary //j. Fluid Mech. 2003. V. 493. P. 59-88.
Сибгатуллт И.Н., Ерманюк Е.В. Аттракторы внутренних и инерционных волн (обзор) // Прикладная механика и техническая физика. 2019. Т. 60, № 2. С. 113-136.
Rieutord M., Georgeot B., Valdettaro L. Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum //j. Fluid Mech. 2001. V. 435. P. 103-144. 10.1017/ S0022112001003718.
Wu K., Welfert B.D., Lopez J.M. Librational forcing of a rapidly rotating fluid-filled cube //j. Fluid Mech. 2018. V. 842. P. 469-494.
Wu K., Welfert B.D., Lopez J.M. Reflections and focusing of inertial waves in a librating cube with the rotation axis oblique to its faces //j. Fluid Mech. 2020. V. 896. Art. A5.
Wu K., Welfert B.D., Lopez J.M. Reflections and focusing of inertial waves in a tilted librating cube //j. Fluid Mech. 2022. V. 947. Art. A10.
Wang C.Y. Cylindrical tank of fluid oscillating about a steady rotation //j. Fluid Mech. 1970. V. 41. P. 581-592.
Busse F.H. Zonal flow induced by longitudinal librations of a rotating cylindrical cavity // Physica D. 2011. V. 240 (2). P. 208-211.
Noir J., Calkins M.A., Lasbleis M., Cantwell J., Aurnou J.M. Experimental study of libration-driven zonal flows in a straight cylinder // Phys. Earth Planet.Inter. 2010. V. 1-2. P. 98-106.
Subbotin S. V., Dyakova V. V. Inertial waves and steady flows in a liquid filled librating cylinder // Microgravity Sci. Technol. 2018. V. 30 (4). P. 383-392.
Subbotin S. Non-axisymmetric flow excited by fluid oscillations in a rotating cylinder with sloping ends //j. Phys.: Conf. Ser. 2021. V. 1809. Art. 012015. 10.1088/1742-6596/ 1809/1/012015.
Thielicke W., Stamhuis E.J. PIVlab - Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB (version: 2.50).
Subbotin S., Shiryaeva M. Steady vortex flow induced by inertial wave attractor in a librating cylinder with sloping ends // Microgravity Sci. Technol. 2022. V. 34 (5). Art. 89. 10.1007/s12217-022- 10008-x.
Subbotin S. Steady circulation induced by inertial modes in a librating cylinder // Phys. Rev. Fluids. 2020. V. 5 (1). Art. 014804.
Sauret A., Cébron D, Le Bars M., Le Dizès S. Fluid flows in a librating cylinder // Phys. Fluids. 2012. V. 24. Art. 026603.
 Effect of non-axisymmetric inertial waves on the steady fluid circulation in a rotating cylinder | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/13

Effect of non-axisymmetric inertial waves on the steady fluid circulation in a rotating cylinder | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 91. DOI: 10.17223/19988621/91/13

Download full-text version
Counter downloads: 152