Isomorphisms of incidence algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/2

Isomorphisms of incidence algebras

Let Y and X be preordered sets, R be an algebra over some commutative ring, K′ = I(Y, R) and K = I(X, R) be incidence algebras. Several questions can be formulated regarding isomorphisms between the algebras K′ and K. One of them is known as the isomorphism problem. It is usually written in the following form. If the algebras K′ and K are isomorphic, then will Y and X be isomorphic as preordered sets? Another general question asks us to find the structure of isomorphisms between K′ and K. The article contains two theorems. Theorem 3.1, under certain assumptions about the algebras K′ and K and the ring R, gives a positive answer to the isomorphism problem. Theorem 3.2, under one condition on the algebras K′ and K, states that any isomorphism of the algebras K′ and K after conjugation by an inner automorphism of the algebra K becomes a diagonal (in a certain sense) isomorphism.

Download file
Counter downloads: 4

Keywords

preordered set, isomorphism, incidence algebra

Authors

NameOrganizationE-mail
Krylov Piotr A.Tomsk State Universitykrylov@math.tsu.ru
Norbosambuev Tsyrendorzhi D.Tomsk State Universitynstsddts@yandex.ru
Всего: 2

References

Tapkin D.T. Isomorphisms of formal matrix rings with zero trace ideals // Siberian Math. Zh. 2018. Vol. 59. P. 523-535.
Krylov P., Tuganbaev A. Incidence rings: automorphisms and derivations // arXiv:2305.02984v\ [math.RA], 2023. doi: \0.48550/arXiv.2305.02984.
Dascalescu S., van Wyk L. Do Isomorphic Structural Matrix Rings have Isomorphic Graphs? // Proc. Amer. Math. Soc. 1996. Vol. 124 (5). P. 1385-1391.
Tapkin D.T. Isomorphisms of formal matrix incidence rings // Russian Mathematics. 20\7. Vol. 61. P. 73-79.
Voss E.R. On the isomorphism problem for incidence rings // Illinois J. Math. 1980. Vol. 24 (4). P. 624-638.
Leroux P. The isomorphism problem for incidence algebras of Mobius categories // Illinois J. Math. 1982. Vol. 26 (1). P. 52-61.
Spiegel E., O'Donnell C.J. Incidence Algebras. New York: Marcel Dekker, \997. 334 p.
Крылов П.А., Норбосамбуев Ц.Д. Об автоморфизмах и дифференцированиях редуциро ванных алгебр и коалгебр инцидентности // Вестник Томского госуниверситета. Математика и механика. 2024. № 90. С. 33-39.
Кайгородов Е.В., Крылов П.А. Кольца инцидентности и их автоморфизмы // Вестник Томского госуниверситета. Математика и механика. 2024. № 91. С. 41-50.
 Isomorphisms of incidence algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/2

Isomorphisms of incidence algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/2

Download full-text version
Counter downloads: 100