Constructive method for solving some classes of hypersingular integral equations of the second kind | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/3

Constructive method for solving some classes of hypersingular integral equations of the second kind

The paper studies approximate methods for solving hypersingular integral equations obtained from the Neumann external boundary value problem and from the external boundary value problem with the impedance condition for the Helmholtz equation in two-dimensional space. It should be pointed out that these hypersingular integral equations involve an operator generated by the normal derivative of the double layer potential. A counterexample built by A.M. Lyapunov shows that the normal derivative for a double layer potential with continuous density, generally speaking, does not exist, i.e., the operator generated by the normal derivative of the double layer potential is not defined in the space of continuous functions. Using the regularization method, the considered hypersingular integral equations of the external Neumann boundary value problem and the external boundary value problem with the impedance condition for the Helmholtz equation are reduced to weakly singular integral equations. Having constructed quadrature formulas for one class of curvilinear integrals, the integral equations under consideration are replaced by a system of algebraic equations. Then, using G.M. Vainikko’s theorem on convergence for linear operator equations, we prove that the resulting systems of algebraic equations are uniquely solvable, and the solutions to the system of algebraic equations converge to the value of the exact solution of the considered hypersingular integral equations at the reference points, and the rate of convergence of the method is indicated.

Download file
Counter downloads: 3

Keywords

collocation method, curvilinear hypersingular integral, integral equations method, Helmholtz equation, impedance boundary value problem, Neumann boundary value problem

Authors

NameOrganizationE-mail
Khalilov Elnur H.Azerbaijan State Oil and Industry University; Western Caspian Universityelnurkhalil@mail.ru
Всего: 1

References

Вайникко Г.М. Регулярная сходимость операторов и приближенное решение уравнений // Итоги науки и техники. Математический анализ. 1979. Т. 16. С. 5-53.
Халилов Э.Г. О приближенном решении одного класса граничных интегральных уравнений первого рода // Дифференциальные уравнения. 2016. Т. 52, № 9. С. 1277-1283.
Халилов Э.Г. Исследование приближенного решения интегрального уравнения внешней краевой задачи Дирихле для уравнения Гельмгольца в двумерном пространстве // Вестник Томского государственного университета. Математика и механика. 2023. № 82. С. 39-54.
Khalilov E.H. Quadrature formulas for some classes of curvilinear integrals // Baku Math. Journal. 2022. V. 1 (1). P. 15-27.
Халилов Э.Г. Обоснование метода коллокации для одного класса поверхностных интегральных уравнений // Математические заметки. 2020. T. 107, № 4. C. 604-622.
Бахшалыева М.Н., Халилов Э.Г. Обоснование метода коллокации для интегрального уравнения внешней краевой задачи Дирихле для уравнения Лапласа // Журнал вычислительной математики и математической физики. 2021. Т. 61, № 6. С. 936-950.
Владимиров В.С. Уравнения математической физики. М.: Наука, 1976. 527 с.
Мусхелешвили Н.И. Сингулярные интегральные уравнения. М.: Физматлит, 1962. 599 с.
Kress R. On the numerical solution of a hypersingular integral equation in scattering theory // J. of Comput. Appl. Math. 1995. V. 61. P. 345-360.
Халилов Э.Г. Конструктивный метод решения краевой задачи для уравнения Гельм гольца с импедансным условием // Дифференциальные уравнения. 2018. Т. 54, № 4. С. 544-555.
Waterman P.C. New formulation of acoustic scattering // The J. of the Acoustical Society of America. 1969. V. 45. P. 1417-1429.
Khalilov E.H., Aliev A.R. Justification of a quadrature method for an integral equation to the external Neumann problem for the Helmholtz equation // Math. Meth. in the Appl. Sc. 2018. V. 41 (16). P. 6921-6933.
Yaman O.I., Ozdemir G. Numerical solution of a generalized boundary value problem for the modified Helmholtz equation in two dimensions // Math.Computers in Simulation. 2021. V. 190. P. 181-191.
Harris P.J., Chen K. On efficient preconditioners for iterative solution of a Galerkin boundary element equation for the three-dimensional exterior Helmholtz problem // J. of Comput. Appl. Math. 2003. V. 156. P. 303-318.
Kleinman R.E., Wendland W. On Neumann's method for the exterior Neumann problem for the Helmholtz equation // J. of Math. Anal. Appl. 1977. V. 57 P. 170-202.
Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М.: Мир, 1987. 311 с.
Гюнтер Н.М. Теория потенциала и ее применение к основным задачам математической физики. М.: Гос. изд-во тех.-теорет. лит., 1953. 415 с.
Anand A., Ovall J., Turc C. Well-conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners // J.Int. Eq. Appl. 2012. V4. 2 (3). P. 321-358. URL: http://projecteuclid.org/euclid.jiea/1350925560.
 Constructive method for solving some classes of hypersingular integral equations of the second kind | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/3

Constructive method for solving some classes of hypersingular integral equations of the second kind | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/3

Download full-text version
Counter downloads: 100