Numerical modeling of high-speed water flow around a body of revolution with a blunt front end | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/9

Numerical modeling of high-speed water flow around a body of revolution with a blunt front end

In this paper, a quasi-stationary problem of high-speed water flow around a body of revolution with a blunt front end is solved theoretically and experimentally to identify the main processes and phenomena affecting the supercavity profile around the body under given conditions. It is shown that the considered problem can be reduced to a mechanical problem of determining the motion of an ideal incompressible fluid under the action of given forces. The FlowVision software package has been verified using the problem of high-speed water flow around blunt bodies of revolution in the presence of cavitation phenomena in the flow. The pressure and radial velocity distributions, as well as the supercavity profile shapes are obtained for free-stream flow velocities varying from 113 to 356 m/s. The average drag coefficient of the disk cavitator (Cx0 = 0.81), which has been obtained numerically, complies with that obtained experimentally. Qualitative and quantitative agreement of the numerical and experimental results in terms of the supercavity profile around the projectile is derived within the accepted error of localization of the supercavity profile boundary from photographs.

Download file
Counter downloads: 4

Keywords

cavity, projectile, FlowVision, supercavitation, cavitation, hydroballistic track, water, drag coefficient, numerical modeling

Authors

NameOrganizationE-mail
Ishchenko Aleksandr N.Tomsk State Universityichan@niipmm.tsu.ru
Aksenov Andrey A.OOO “TESIS”andrey@tesis.com.ru
Akol’zin Vladislav S.Tomsk State Universityakolzin99@inbox.ru
Biryukov Il’ya M.Tomsk State Universityilya.biryukov.2072@mail.ru
Chupashev Andrey V.Tomsk State Universitychupashevav@niipmm.tsu.ru
Shestopalova Alena S.Tomsk State Universityshestopalova@ftf.tsu.ru
Shmelev Vladimir V.OOO “TESIS”shvv@flowvision.ru
Всего: 7

References

Бэтчелор Дж. Введение в динамику жидкости: пер. с англ. М.: Мир, 1973. 758 с.
Кнэпп Р., Дейли Дж., Хэммит Ф. Кавитация. М.: Мир, 1974. 688 с.
Klose G.J., Acosta A.J. Some new measurements on the drag of cavitating disks // J. Ship Res. 1965. V. 9 (2). P. 102-104.
Sauer J., Schnerr G.H. Development of a new cavitation model based on bubble dynamics // ZAMM - Journal of Applied Mathematics and Mechanics. 2001. V. 81. P. 561-562.
Hirt C. W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries // J.Comput. Phys. 1981. V. 39 (1). P. 201-225.
Краснов Н.Ф. Аэродинамика: учебник для вузов. 2-е изд., перераб. и доп. М.: Высш. школа, 1976. Ч. 1: Основы теории. Аэродинамика профиля крыла. 314 с.
Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. М.: Физматлит, 1963. Т. 2. 727 с.
Kinzel M., Krane M., Kirschner I., Moeny M. A numerical assessment of the interaction of a supercavitating flow with a gas jet // Ocean Engineering. 2017. V. 136. P. 304-313.
Аксёнов А.А. FlowVision: индустриальная вычислительная гидродинамика // Компью терные исследования и моделирование. 2017. Т. 9, № 1. С. 5-20.
Буйвол В.Н. Тонкие каверны в течениях с возмущениями. Киев: Наук. думка, 1980. 296 с.
Chen J., Jia H., Zhang L., Wang Z., Xie R. Examining the Influence of the Water Entry Velocity of Projectiles on Supercavity Flow and Ballistic Characteristics under Wave Conditions // Journal of Applied Fluid Mechanics 2024, V. 17 (5). P. 967-979. 10.47176/jafm. 17.05.2330.
FlowVision. Руководство пользователя. Версия 3.14.02. 2024. 346 с.
Zhang L., Zhang C., Jia H., Dong R. Effects of lateral flows on the supercavitation and hydro dynamic characteristics of underwater series and parallel high-speed projectiles // J. Mar. Sci. Eng. 2023. V. 11 (4). Art. 878.
Савченко Ю.Н. Исследование суперкавитационных течений // Прикладна гiдромеханiка. 2007. Т. 9, № 2. С. 150-158.
Lu R., Pan G., Tan K., Yin S. Numerical simulation of cavitation and damping force characteris tics for a high-speed supercavitation vehicle // J. Mar. Sci. Eng. 2021. V. 9 (11). Art. 1171.
Логвинович Г.В. Некоторые вопросы глиссирования и кавитации // Труды ЦАГИ. 1980. № 2052. C. 250-270.
 Numerical modeling of high-speed water flow around a body of revolution with a blunt front end | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/9

Numerical modeling of high-speed water flow around a body of revolution with a blunt front end | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 92. DOI: 10.17223/19988621/92/9

Download full-text version
Counter downloads: 99