Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. I. Experiment: methodology, processing, results
Characteristics of condensed combustion products (CCPs) of propellants based on AP, aluminum, and the inert binder SKDM-80 with a variation in the dispersion of aluminum were studied by the sampling method. The experiments were carried out in the pressure range of 2-8 MPa in argon, the particles were quenched near the combustion surface. The data on burning rate, morphological and granulometric composition of CCPs, incompleteness of metal combustion and heat release efficiency of metallic fuel are presented. Some empirical factors indicate that the pathways of chemical reactions change with an increase in pressure. In particular, the amount of acidic products in the combustion products increases, and incompleteness of metal combustion also decreases. This leads to an increase in the energy efficiency of metallic fuel at a pressure of about 9 MPa for both propellants; however, propellant with Alex is inferior in this parameter to fuel with ASD-4 due to the higher initial oxidation of Alex powder as compared to ASD-4. The obtained set of experimental data can be used to validate the developed combustion models of aluminized propellants in the second paper of the cycle.
Keywords
composite propellant,
aluminum,
condensed combustion products,
particle,
size distribution,
combustion completeness,
combustion rateAuthors
Poryazov Vasiliy A. | Tomsk State University | poryazov@ftf.tsu.ru |
Glotov Oleg G. | Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences | glotov@kinetics.nsc.ru |
Krainov Aleksey Yu. | Tomsk State University | a.krainov@ftf.tsu.ru |
Krainov Dmitriy A. | Tomsk Polytechnic University | kraynov@tpu.ru |
Sorokin Ivan V. | Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences | sorokin@kinetics.nsc.ru |
Surodin Grigory S. | Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences | surodin83@yandex.ru |
Всего: 6
References
Jiang Y., Yilmaz N.E.D., Barker K.P., Baek J., Xia Y., Zheng X. Enhancing Mechanical and Combustion Performance of Boron/Polymer Composites via Boron Particle Functionalization // ACS Applied Materials and Interfaces. 2021. V. 13 (24). P. 28908-28915.
Dreizin E.L. On the Mechanism of Asymmetric Aluminum Particle Combustion // Combust. Flame. 1999. V. 117. P. 841-850.
Глотов О.Г., Белоусова Н.С., Суродин Г.С. Горение крупных частиц-агломератов алюминия в воздухе. I. Методика исследования, времена горения и характеристики финальных оксидных частиц // Физика горения и взрыва. 2025. Т. 61. (В печати).
Zarko V.E., Glotov O.G. Formation of Al oxide particles in combustion of aluminized condensed systems (Review) // Science and Technology of Energetic Materials. 2013. V. 74 (6). P. 139-143.
Fedotova T.D., Glotov O.G., Zarko V.E. Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders // Propellants, Explosives, Pyrotechnics. 2007. V. 32 (2). P. 160-164.
Бобрышев В.П., Лисица В.Д., Спиридонов Ф.Ф. Двухфракционная модель слабонеравновесного двухфазного течения. Качественная теория коагуляции и осаждения k-фазы // Макроскопическая кинетика, химическая и магнитная газодинамика: тез. докл. всесоюз. школы-семинара. Томск-Красноярск: Изд-во Том. ун-та, 1991. Т. 1. С. 11-12.
Теплотворная способность горючих материалов // Studme.org. 2021. URL: https://studme.org/35536/tovarovedenie/teplotvornaya_sposobnost_goryuchih_materialov (дата обращения: 22.04.2024).
Куценогий К.П. Изучение физико-химических характеристик мощного аэрозольного облака: дис.. канд. техн. наук. Новосибирск, 1970. 144 с.
Попок В.Н., Вандель А.П., Колесников А.Ю. Исследование горения перхлоратных металлизированных композиций, содержащих соли динитрамида // Бутлеровские сообщения. 2013. Т. 36, № 11. С. 58-66.
Pang W., De Luca L.T., Fan X., Glotov O.G., Zhao F. Boron-Based Fuel-Rich Propellant: Properties, Combustion, and Technology Aspects. CRC Press, Taylor & Francis Group, 2019. 323 p.
Glotov O.G., Poryazov V.A., Surodin G.S., Sorokin I.V., Krainov D.A.Combustion features of boron-based composite solid propellants // Acta Astronaut. 2022. V. 204. Р. 11-24. 10.1016/j.actaastro.2022.12.024 2023.
Петрянов И.В., Козлов В.И., Басманов П.И., Огородников Б.И. Волокнистые филь трующие материалы ФП. М.: Знание, 1968. 78 с.
Korotkikh A.G., Glotov O.G., Arkhipov V.A., Zarko V.E., Kiskin A.B. Effect of iron and boron ultrafme powders on combustion of aluminized solid propellants // Combustion and Flame. 2017. V. 178. P. 195-204.
Глотов О.Г., Зарко В.Е., Карасев В.В. Проблемы и перспективы изучения агломерации и эволюции агломератов методом отборов // Физика горения и взрыва. 2000. Т. 36, № 1. С. 161-172.
Глотов О.Г., Зырянов В.Я. Конденсированные продукты горения алюминизированных топлив. I. Методика исследования эволюции частиц дисперсной фазы // Физика горения и взрыва. 1995. Т. 31, № 1. С. 74-80.
Иванов Н.Н., Иванов А.Н. Приборы и установки контактной диагностики и их использование в исследовании высокотемпературных двухфазных потоков // Физика горения и взрыва. 1991. Т. 27, № 6. С. 87-101.