A mathematical model of the dynamics of biogeochemical processes in a freshwater lake including oxygen circulation with the development of the thermal bar | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 93. DOI: 10.17223/19988621/93/4

A mathematical model of the dynamics of biogeochemical processes in a freshwater lake including oxygen circulation with the development of the thermal bar

In this paper, а nonhydrostatic mathematical model is described for reproducing hydrophysical and biogeochemical processes including the dynamics of dissolved oxygen in a freshwater lake during the thermal bar. The biogeochemical part of the model includes the following variables: oxygen, nitrate, ammonium, phosphate, chlorophyll a, phytoplankton, zooplankton, and small and large detritus. The oxygen supply from the atmosphere to the lake is parameterized taking into account the solubility of oxygen in water and the variability of wind speed on the lake surface. The biochemical dynamics of oxygen are described by processes of photosynthesis, respiration, nitrification, and remineralization. The solution of reaction-convection-diffusion equations of the model is based on the finite volume method with the use of second-order implicit difference schemes in space and time. The results of simulation showed that the highest level of dissolved oxygen was observed in the thermoactive area on the surface of the lake. The concentration of dissolved oxygen was high throughout the entire depth (due to intense mixing of waters with different temperatures) in the vicinity of the thermal bar, isolines of oxygen were qualitatively similar to isotherms in the estuary region. The content of ammonium supplied with the tributary waters was maximum at the confluence of the river, and in the thermoactive area in front of the thermal bar it decreased due to the growth of phytoplankton biomass. Qualitatively, the distribution patterns of nitrates and phosphates in the thermoinert area were identical.

Download file
Counter downloads: 7

Keywords

thermal bar, biogeochemical cycle, dissolved oxygen, mathematical model, numerical experiment, lake ecosystem, Lake Baikal

Authors

NameOrganizationE-mail
Tsydenov Bair O.Tomsk State Universitytsydenov@math.tsu.ru
Degi Dmitriy V.Tomsk State Universitydimadegi@rambler.ru
Bart Andrey A.Tomsk State Universitybart@math.tsu.ru
Trunov Nikita S.Tomsk State Universitysuslayndel@yandex.ru
Churuksaeva Vladislava V.Tomsk State Universitychu.vv@mail.ru
Всего: 5

References

Ерина О.Н. Режим растворенного кислорода в стратифицированных водохранилищах Москворецкой системы водоснабжения г. Москвы: дис.. канд. геогр. наук. М., 2015. 188 с.
Palshin N., Zdorovennova G., Efremova T., Bogdanov S., Terzhevik A., Zdorovennov R. Dissolved oxygen stratification in a small lake depending on water temperature and density and wind impact // IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 937. Art. 032019.
Иванова М.Б. Продукция планктонных ракообразных в пресных водах. Л.: Наука и техника, 1985. 220 с.
Domysheva V., Vorobyeva S., Golobokova L., Netsvetaeva O., Onischuk N., Sakirko M., Khuriganova O., Fedotov A. Assessment of the current trophic status of the Southern Baikal littoral zone // Water. 2023. V. 15 (6). Art. 1139.
Tomberg I.V., Sorokovikova L.M., Popovskaya G.I., Bashenkhaeva N.V., Sinyukovich V.N., Ivanov V.G. Concentration dynamics of biogenic elements and phytoplankton at Selenga R. Mouth and in Selenga shallows (Lake Baikal) // Water Resour. 2014. V. 41 (6). P. 687-695.
Reynolds C.S. Phytoplankton assemblages and their periodicity in stratifying lake systems // Holarctic Ecol. 1980. V. 3 (3). P. 141-159. doi: 10.1m/j.1600-0587.1980.tb00721.x.
Shimaraev M.N., Granin N.G., Zhdanov A.A. Deep ventilation of Lake Baikal waters due to spring thermal bars // Limnol. Oceanogr. 1993, V. 38 (5). P. 1068-1072. 10.4319/ lo.1993.38.5.1068.
Troitskaya E.S., Shimaraev M.N. Cases of mass development of intrusions in Lake Baikal and the correlation of intrusions with atmospheric circulation processes // Limnology and Freshwater Biology. 2022. V. 6. P. 1712-1719.
Parfenova V.V., Shimaraev M.N., Kostornova T.Y., Domysheva V.M., Levin L.A., Dryukker V.V., Zhdanov A.A., Gnatovskii R.Yu., Tsekhanovskii V.V., Logacheva N.F. On the vertical distribution of microorganisms in lake Baikal during spring deep-water renewal // Microbiology. 2000. V. 69 (3). P. 357-363.
Fennel K., Wilkin J., Levin J., Moisan J., O'Reilly J., Haidvogel D. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget // Global Biogeochemical Cycles. 2006. V. 20 (3). GB3007.
Gan J., Lu Z., Cheung A., Dai M., Liang L., Harrison P.J., Zhao X. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS) // J. Geophys. Res.: Oceans. 2014. V. 119 (12). P. 88588877.
Fennel K., Hu J., Laurent A., Marta-Almeida M., Hetland R. Sensitivity of hypoxia predictions for the Northern Gulf of Mexico to sediment oxygen consumption and model nesting // J. Geophys. Res.: Oceans. 2013. V. 118 (2). P. 990-1002.
Garcia H.E., Gordon L.I. Oxygen solubility in seawater: Better fitting equations // Limnol. Oceanogr. 1992. V. 37 (6). P. 1307-1312.
Wanninkhof R. Relationship between wind speed and gas exchange // J. Geophys. Res. 1992. V. 97. P. 7373-7382.
Цыденов Б.О. Математическая модель транспорта растворенного кислорода при развитии термобара // Вестник Томского государственного университета. Математика и механика. 2023. № 86. С. 176-187.
Eppley R. W. Temperature and phytoplankton growth in the sea // Fish. Bull. 1972. V. 70 (4). P. 1063-1085.
The Engineering ToolBox. Oxygen - solubility in fresh and sea water vs. temperature. URL: https://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html (accessed: 14.08.2023).
Tsydenov B.O., Starchenko A. V. To the selection of heat flux parameterization models at the water-air interface for the study of the spring thermal bar in a deep lake // Proc. SPIE 9680, 96800H. 2015. P. 1-8.
Olson R.J. Differential photoinhibition of marine nitrifying bacteria: A possible mechanism for the formation of the primary nitrite maximum // J. Mar. Res. 1981. V. 39 (2). P. 227-238.
Orlanski I. A simple boundary condition for unbounded hyperbolic flows // J.Comput. Phys. 1976. V. 21 (3). P. 251-269.
Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models // AIAA J. 1988. V. 26 (11). P. 1299-1310.
Holland P.R., Kay A., Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake // J. Mar. Syst. 2003. V. 43 (1-2). P. 61-81.
Patankar S. Numerical heat transfer and fluid flow. CRC Press, 1980. 197 p.
Leonard B. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Computer Methods in Applied Mechanics and Engineering. 1979. V. 19 (1). P. 59-98.
Ильин В.П. Методы неполной факторизации для решения алгебраических систем. М.: Физматлит, 1995. 288 c.
Shimaraev M.N., Verbolov V.I., Granin N.G., Sherstyankin P.P. Physical Limnology of Lake Baikal: A Review. Irkutsk-Okayama, 1994. 81 p.
Вотинцев К.К. Гидрохимия // Проблема: Байкала / ред. Г.И. Галазий, К.К. Вотинцев. Новосибирск, 1978. Т. 16, № 36. С. 124-146.
Расписание Погоды. URL: https://rp5.ru/(дата обращения: 14.08.2023).
Tsydenov B.O., Trunov N.S., Churuksaeva V.V., Degi D. V. Wind effects on deep convection in Lake Baikal during the autumnal thermal bar // Moscow University Physics Bulletin. 2024. V. 79 (2). P. 283-290.
 A mathematical model of the dynamics of biogeochemical processes in a freshwater lake including oxygen circulation with the development of the thermal bar | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 93. DOI: 10.17223/19988621/93/4

A mathematical model of the dynamics of biogeochemical processes in a freshwater lake including oxygen circulation with the development of the thermal bar | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 93. DOI: 10.17223/19988621/93/4

Download full-text version
Counter downloads: 71