Deformation and fracture of PLA honeycomb samples under dynamic loading | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 93. DOI: 10.17223/19988621/93/9

Deformation and fracture of PLA honeycomb samples under dynamic loading

The search for and investigation of new porous materials with a bionic honeycomb structure is an urgent scientific problem due to the active development of additive technologies. The aim of this study is to examine the effect of the morphology of PLA (polylactide, C3H4O3) samples with a honeycomb structure based on a triply periodic minimal surface, namely the Schwarz-Diamond surface, on their impact resistance under dynamic (ballistic) loading. To produce samples with the Schwarz-Diamond surface, a software, which generates G-Code using surface equations, is developed. The honeycomb samples are manufactured from PLA filaments via fusion deposition modeling (FDM) using a Picasso 3D printer. The dimensions of the cells in the samples vary from 1 to 5 mm, which corresponds to the large honeycomb morphology. Ballistic tests are conducted on an experimental test setup comprising a Crossman 2100 classic BB pneumatic pump air rifle, a device for recording the velocity of a spherical projectile (ball), and a pocket to arrange a test sample and to catch the ball and fragments. The analysis of deformation and fracture of the PLA samples reveals that the fracture pattern after ballistic impact tests is dependent on density and exhibits a transition from ductile to quasibrittle behavior. Quasi-brittle fracture behavior is observed in the samples with the highest density (0.93 g/cm). The mechanical properties of the Schwarz-Diamond surface structures are found to be moderate. Therefore, such structures can be used as reinforcement in various applications, including building materials, aerospace components, and automotive parts.

Download file
Counter downloads: 4

Keywords

polylactide (PLA), honeycomb structure, metamaterials, 3D printing, dynamic loading, fracture

Authors

NameOrganizationE-mail
Kazantseva Nataliya V.M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Scienceskazantseva@imp.uran.ru
Onishchenko Anatoliy O.M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciencestolya_onishenko@mail.ru
Zelepugin Sergey A.Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Tomsk State Universityszel@yandex.ru
Cherepanov Roman O.Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciencesrcherepanov82@gmail.com
Ivanova Oksana V.Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Scienceso.ivanova@hq.tsc.ru
Всего: 5

References

Karcher H., Polthier K. Construction of triply periodic minimal surfaces // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1996. V. 354 (1715). P. 2077-2104.
Restrepo S., Ocampo S., Ram 'irez J.A., Paucar C., Garc 'la C. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing // Journal of Physics: Conf. Series. 2017. V. 935. Art. 012036.
Промахов В.В., Матвеев А.Е., Шульц Н.А., Бахмат В.Р., Дронов Ф.Ю., Туранов Т.Э. Исследование структуры и свойств металломатричных композиционных материалов, полученных методом прямого лазерного выращивания // Вестник Томского государственного университета. Математика и механика. 2022. № 77. C. 125-139.
Guo Y., Rosa M.I.N., Ruzzene M. Topological surface states in a gyroid acoustic crystal // Adv. Sci. 2023. V. 10 (6). Art. 2205723.
Arenas J.P., Crocker M.J. Recent trends in porous sound-absorbing materials // Sound and Vibration. 2010. V. 44 (7). P. 12-17.
Li X., Chua J.W., Yu X., Li Z., Zhao M., Wang Z., Zhai W. 3D-printed lattice structures for sound absorption: Current progress, mechanisms and models, structural-property relationships, and future outlook // Adv. Sci. 2024. V. 11. Art. 2305232.
Дьяченко С.В., Лебедев Л.А., Сычев М.М., Нефедова Л.А. Физико-механические свой ства модельного материала с топологией трижды: периодических поверхностей минимальной энергии типа гироид в форме куба // Журнал технической физики. 2018. Т. 88, вып. 7. С. 1014-1017.
Abueidda D.W., Elhebeary M., Shiang C.-S. (Andrew), Pang S., Abu Al-Rub R.K., Jasiuk I.M. Mechanical properties of 3D printed polymeric gyroid cellular structures: Experimental and finite element study // Materials and Design. 2019. V. 165. Art. 107597. 10.1016/ j.matdes.2019.107597.
Богданова О.И., Седуш Н.Г., Овчинникова Т.Н., Белоусов С.И., Поляков Д.К., Чвалун С.Н. Полилактид - биоразлагаемый биосовместимый полимер на основе растительного сырья // Экология и промышленность России. 2010. № 5. С. 18-23.
Kulkarni R.K., Pani K.C., Neuman C., Leonard F. Polylactic acid for surgical implants // Arch. Surg. 1966. V. 93. P. 839-843.
Туренко А.Н., Ужва А.В., Сергиенко А.В. Результаты исследований поглощения энергии при ударе изделиями из композитных материалов // Вестник ХНАДУ. 2013. Вып. 60. С. 90-94.
 Deformation and fracture of PLA honeycomb samples under dynamic loading | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 93. DOI: 10.17223/19988621/93/9

Deformation and fracture of PLA honeycomb samples under dynamic loading | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 93. DOI: 10.17223/19988621/93/9

Download full-text version
Counter downloads: 70