On a subclass of close-to-convex functions related to starlike functions of order 1/2
The article introduces and investigates a special subclass of close-to-convex functions in a unit disk which is defined in terms of starlike functions of the order 1/2. Functions of this class, as well as starlike functions of the order 1/2, may have omissions in the decomposition. Some close subclasses have been actively studied in the works of Gao C.-Y., Zhou S.-Q., Kowalczyk J., Les-Bomba E., Prajapat J.K., and other authors published in the last decade. The class of functions introduced in this paper is characterized by the fact that the range of values of the functional used is contained in the right half of the generalized Bernoulli lemniscate with a nodal point 0 and a given angle between the tangents at the nodal point, which allows us to consider many special cases. For example, a disk of arbitrary radius with a point 0 at the border, an angle with a vertex at point 0 of a given size, and others. For the introduced class of functions and its subclasses, exact distortion theorems and convexity radii are found, and extreme functions are given. Both new results and generalizations of previously known results are obtained. To solve the extreme problems under consideration, the article provides accurate estimates of the logarithmic derivative in the class of analytical functions, the codomain of values of which are contained in the right half of the generalized Bernoulli lemniscate. These estimates are given both for the case of a standard decomposition of a function in a series, and in the presence of omissions in the decomposition and summarize the well-known results of Goel R.M. and Shaffer D.B.
Keywords
starlike functions,
close-to-convex functions,
distortion estimates,
radii of convexityAuthors
Maiyer Fedor F. | Kostanay Regional University named after A. Baitursynuly | maiyer@mail.ru |
Tastanov Meyrambek G. | Kostanay Regional University named after A. Baitursynuly | tastao@mail.ru |
Utemissova Anar A. | Kostanay Regional University named after A. Baitursynuly | anar_utemisova@mail.ru |
Всего: 3
References
Reade M. The coefficients of close-to-convex functions // Duke Math. J. 1956. V. 23 (3). P. 459-462. doi: 10.1215/S0012-7094-56-02342-0.
Renyi A. Some remarks on univalent functions // Ann. Univ. Mariae Curie-Sklodowska. Sec. A. 1959. V. 3. P. 111-121.
Gao C.-Y., Zhou S.-Q. On a class of analytic functions related to the class to the starlike functions // Kyungpook Math. J. 2005. V. 45. P. 123-130.
Kowalczyk J., Les-Bomba E. On a subclass of close-to-convex functions // Appl. Math. Letters. 2010. V. 23. P. 1147-1151.
Prajapat J.K. A new subclass of close-to-convex functions // Surv. Math. Appl. 2016. V. 11. P. 11-19. URL: https://www.utgjiu.ro/math/sma/v11/p11_02.pdf.
Qing-Hua Xu, Srivastava H.M., Zhou Li. A certain subclass of analytic and close-to-convex functions // Applied Math. Letters. 2011. V. 24, is. 3. P. 396-401. doi: 10.1016/j.aml.2010.10.0374.
Cho N.E., Kwon O.S., Ravichandran V. Coefficient, distortion and growth inequalities for certain close-to-convex functions // J. of Inequalities and Applications. 2011. V. 2011:100. URL: https://link.springer.com/content/pdf/10.1186/1029-242X-2011-100.pdf?pdf=button.
Майер Ф.Ф., Тастанов М.Г., Утемисова А.А., Байманкулов А.Т. Об обобщении некоторых классов почти выпуклых и типично вещественных функций // Вестник Томского государственного университета. Математика и механика. 2023. № 85. С. 5-21. doi: 10.17223/19988621/85/1.
Shaffer D.B. Distortion theorems for a special class of analytic functions // Proc. Amer. Math. Soc. 1973. V. 39 (2). P. 281-287. doi: 10.2307/2039632.
Goel R.M. A class of close-to-convex functions // Czechoslovak Math. J. 1968. V. 18 (93). P. 104-116. doi: 10.21136/CMJ.1968.100815.
Libera R.J., Livingston A.E. Bounded functions with positive real part // Czechoslovak Math. J. 1972. V. 22 (97). P. 195-209. doi: 10.21136/cmj.1972.101090.
MacGregor T.H. Functions whose derivative has a positive real part // Trans. Amer. Math. Soc. 1962. V. 104. P. 532-537. doi: 10.1090/s0002-9947-1962-0140674-7.
MacGregor T.H. A class of univalent functions // Trans. Amer. Math. Soc. 1964. V. 15. P. 311-317.
MacGregor T.H. The radius of univalence of certain analytic functions // Proc. Amer. Math. Soc. 1963. V. 14. P. 514-520.
Rosihan M.Ali, Ravichandran V., Sharma K. Starlikeness of Analytic Functions with Subordinate Ratios // Hindawi J. of Math. 2021. V. 2021. P. 1-8. doi: 10.1155/2021/8373209.
Shah G.M. On the univalence of some analytic functions // Pacific J. Math. 1972. V. 43 (1). P. 239-250. doi: 10.2140/pjm.1972.43.239.
Shaffer D.B. On bounds for the derivative of analytic functions // Proc. Amer. Math. Soc. 1973. V. 37. P. 517-520. doi: 10.11568/kjm.2021.29.4.785.
Graham I., Varolin D. Bloch constants in one and several variables // Pacific J. Math. 1996. V. 174 (2). P. 347-357.
Hengartner W., Schober G. Analytic functions close to mappings convex in one direction // Proc. Amer. Math. Soc. 1971. V. 28 (2). P. 519-524. URL: https://www.ams.org/journals/proc/1971-028-02ZS0002-9939-1971-0277704-9ZS0002-9939-1971-0277704-9.pdf.
Bshouty D., Lyzzaik A. Univalent functions starlike with respect to a boundary point // Contemp. Math. 2005. V. 382. P. 83-87.
Майер Ф.Ф. Геометрические свойства некоторых классов аналитических в круге функций, выпуклых в направлении мнимой оси // Вестник науки КГУ им. А. Байтурсынова. Сер. естественно-технических наук. 2002. Т. 6, № 2. С. 48-50. URL: https://nauka.kz/page.php?page_id=372&lang=3&page=5931.
Khatter K., Lee S.K., Ravichandran V. Radius of starlikeness for classes of analytic functions // arXiv preprint arXiv: 2006.11744. URL: https://arxiv.org/abs/2006.11744.
El-Faqeer A.S.A., Mohd M.H., Ravichandran V., Supramaniam S. Starlikeness of certain analytic functions // arXiv preprint arXiv:2006.11734. URL: https://arxiv.org/abs/2006.11734.
Sebastianc A., Ravichandran V. Radius of starlikeness of certain analytic functions // Math. Slovaca. 2021. V. 71 (1). P. 83-104. doi: 10.1515/ms-2017-0454.