Numerical simulation of a high-energy impact on Al2O3 | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 94. DOI: 10.17223/19988621/94/13

Numerical simulation of a high-energy impact on Al2O3

Aluminum oxide (Al2O3) is an important ceramic material with remarkable compressive strength and hardness. Al2O3 is a major component of Earth's mantle which makes a significant contribution to high-pressure physics. The construction of a shock adiabatic curve in a wide range of pressures and the determination of the location of phase transitions under shock-wave loading are associated with the derivation of the equation of state. The shock-wave loading of Al2O3 is numerically simulated using a thermodynamic equilibrium model. The equations of state for the two phases of the material are constructed. The missing parameters are obtained based on the correspondence with the experimental data. The dependences of the heat capacity and entropy on the temperature of both phases are plotted, and shock adiabatic curves in the pressure range from 1 GPa to 1.2 TPa are constructed. The high-pressure phase transition is taken into account in calculations. The obtained results are verified and validated using available data from other authors. The presented results provide a basis for considering the theoretical equation of state under extreme conditions, where, nowadays, the model calculations demonstrate significant diversity.

Download file
Counter downloads: 10

Keywords

shock adiabatic curve, polymorphic phase transition, ceramic materials, sapphire, aluminum oxide

Authors

NameOrganizationE-mail
Maevskii Konstantin K.Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Scienceskonstantinm@hydro.nsc.ru
Всего: 1

References

Lin J.F., Degtyareva O., Prewitt C. T., Dera P., Sata N., Gregoryanz E., Mao H., Hemley R.J. Crystal structure of a high-pressure high temperature phase of alumina by in situ X-ray diffraction // Nature materials. 2004. V. 3. P. 389-393. doi: 10.1038/nmat1121.
Зелепугин С.А., Толкачев В.Ф., Тырышкин И.М. Анализ эффективности противоударной стойкости двух групп керамических и композитных материалов // Вестник Томского государственного университета. Математика и механика. 2022. № 80. С. 85-96. doi: 10.17223/19988621/80/8.
Промахов В.В., Коробенков М.В., Шульц Н.А., Жуков А.С., Олисов А.В., Бахмат В.Р., Дронов Ф.Ю., Мялковский И.С. Моделирование накопления повреждений и разрушения керамических композитов AhO3-ZrO2, полученных по аддитивным технологиям, при высокоскоростном нагружении // Вестник Томского государственного университета. Математика и механика. 2021. № 72. С. 140-157. doi: 10.17223/19988621/72/12.
Kashin A.D., Kulkov A.S., Kulkov S.N., Kurovics E., Gomze L.A. Study of Transverse Deformation of Porous Alumina during Uniaxial Mechanical Tests AhO3 // Journal of Silicate Based and Composite Materials. 2021. V. 73 (4). P. 145-148. doi: 10.14382/epitoanyag-jsbcm.2021.21.
McCoy C.A., Kalita P., Knudson M.D., Desjarlais M.P., Duwal S., Root S. Hugoniot, sound speed, and phase transitions of single-crystal sapphire for pressures 0.2-2.1 TPa // Physical Review B. 2023. V. 107. Art. 214102. doi: 10.1103/PhysRevB.107.2141024.
Kato J., Hirose K., Ozawa H., Ohishi Y. High-pressure experiments on phase transition boundaries between corundum, Rh2O3(II)- and CaIrO3-type structures in Al2O3 // American Mineralogist. 2013. V. 98. P. 335-339. doi: 10.2138/am.2013.4133.
Ono S., Oganov A.R., Koyama T., Shimizu H. Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle // Earth and Planetary Science Letters. 2006. V. 246. P. 326-335. doi: 10.1016/j.epsl.2006.04.017.
Marchenko E.I., Oganov A.R., Mazhnik E.A. et al. Stable compounds in the CaO-Al2O3 system at high pressures // Physics and Chemistry of Minerals. 2022. V. 49. Art. 44. doi: 10.1007/s00269-022-01221 -6.
Rocha-Rangel E., Rodríguez-García J.A., Castillo-Robles J.A., Mireles E.N.A., Calles-Arriaga C.A. Mathematical Simulation of the Wettability of Al2O3 Substrate through Different Aluminum Alloys // Journal of Composites Science. 2021. V. 5. Art. 161. doi: 10.3390/jcs5060161.
Mashimo T., Tsumoto K., Nakamura K. High-pressure phase transformation of corundum (a-A2O3) observed under shock compression // Geophysical Research Letters. 2000. V. 27 (14). P. 2012-2024. doi: 10.1029/2000GL008490.
Ansell S., Krishnan S., Weber J.K.R., Felten J.J., Nordine P.C., Beno M.A., Price D.L. Saboungi M.L. Structure of liquid aluminum oxide // Physical Review Letters. 1997. V. 78. P. 464-466. doi: 10.1103/PhysRevLett.78.464.
Ahuja R., Belonoshko A.B., Johansson B. Melting and liquid structure of aluminum oxide using a molecular-dynamics simulation // Physical Review E. 1998. V. 57. P. 1673-1676. doi: 10.1103/PhysRevE.57.1673.
Sinn H., Glorieux B., Hennet L., Alatas A., Hu M., Alp E.E., Bermejo F.J., Price D.L., Saboungi M.L. Microscopic dynamics of liquid aluminum oxide // Science. 2003. V. 299. P. 2047-2049. doi: 10.1126/science.1080950.
Krishnan S., Hennet L., Jahn S., Key T.A., Madden P.A., Saboungi M.L., Price D.L. Structure of Normal and Supercooled Liquid Aluminum Oxide // Chemistry of Materials. 2005. V. 17. P. 2662-2666. doi: 10.1021/cm050254p.
Gust W.H., Royce E.B. Dynamic yield strengths of B4C, BeO and Al2O3 ceramics // J. Appl. Phys. 1971. V. 42. P. 276-295. doi: 10.1063/1.1659584.
Liu H., Tse J.S., Nellis W.J. The electrical conductivity of Al2O3 under shock-compression // Scienti Reports. 2015. V. 5. Art. 12823. doi: 10.1038/srep12823.
Hari A., Hari R., Heighway P.G., Smith R.F., Duffy T.S., Sims M., Singh S., Fratanduono D.E., Bolme C.A., Gleason A.E., Coppari F., Lee H.J., Granados E., Heimann P., Eggert J.H., Wicks J.K. High pressure phase transition and strength estimate in polycrystalline alumina during laser-driven shock compression // Journal of Physics: Condensed Matter. 2023. V. 35. Art. 094002. doi: 10.1088/1361-648X/aca860.
Umemoto K., Wentzcovitch R.M. Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar // Proceedings of the National Academy of Sciences USA. 2008. V. 105 (18). P. 6526-6530. doi: 10.1073/pnas.0711925105.
Ломоносов И.В. Уравнения состояния сапфира, кремнезема, периклаза и рутила // Теплофизика высоких температур. 2023. Т. 61, № 3. С. 473-476. doi: 10.31857/S004036442303016.
Ostrik A. V., Nikolaev D.N. Shock induced melting of sapphire // Journal of Physics: Conference Series. 2022. V. 2154. Art. 012010. doi: 10.1088/1742-6596/2154/1/012010.
Tsuchiya J., Tsuchiya T., Wentzcovitch R.M. Transition from the Rh2O3(II)-to-CaIrO3 structure and the high-pressure-temperature phase // Physical Review B. 2005. V. 72. Art. 020103. doi: 10.1103/PhysRevB.72.020103.
Маевский К.К. Численное моделирование термодинамических параметров углерода // Теплофизика высоких температур. 2021. Т. 59, № 5. С. 701-706. doi: 10.31857/S004036 4421050148.
Маевский К.К. Силикаты магния при высоких динамических нагрузках // Вестник Томского государственного университета. Математика и механика. 2022. № 79. С. 111-119. doi: 10.17223/19988621/79/10.
Maevskii K.K., Kinelovskii S.A. Model of behavior of nitrides and their mixtures under high dynamic loads // AIP Conference Proceedings. 2014. V. 1623. P. 391-394. doi: 10.1063/1.4898964.
Maevskii K.K., Kinelovskii S.A. Thermodynamic parameters of mixtures with epoxy as a component under shock wave loading // Journal of Physics: Conference Series. 2018. V. 946. Art. 012113. doi: 10.1088/1742-6596/946/1/012113.
Григорьев И.С., Мейлихова Е.3. Физические величины. М.: Энергоатомиздат, 1991.
Кикоин И.К. Таблицы физических величин. М.: Атомиздат, 1976.
Гуревич Л.В., Вейц И.В., Медведев В.А. Термодинамические свойства индивидуальных веществ. М.: Наука, 1979. Т. Ш, кн. 1.
Маевский К.К. Численное моделирование термодинамических параметров германия // Теплофизика высоких температур. 2022. Т. 60, № 6. С. 837-843. doi: 10.31857/ S0040364422050210.
Marsh S.P. LASL Shock Hugoniot Data. Berkeley: Univ. California Press, 1980.
Павловский М.Н. Ударная сжимаемость шести высокотвердых веществ // Физика твердого тела. 1970. Т. 12, № 7. С. 2175-2178.
Ostrik A. V., Nikolaev D.N. Construction of the equations of state for polycrystalline solids for the purpose of the numerical solution of problems of continuous medium mechanics // Journal of Physics: Conference Series. 2019. V. 1392. Art. 012017. doi: 10.1088/1742-6596/1392/1/012017.
Kerley G.I. Equation of state and constitutive models for numerical simulations of dust impacts on the solar probe: Report on contract 949182 / Johns Hopkins University, Applied Physics Laboratory. Laurel, MD, 2009.
Miller J.E. 48th annual APS Meeting, division of Plasma physics. 2006. URL: https://www.lle.rochester.edu/media/publications/presentations/documents/APS06/Miller_APS06.pdf.
 Numerical simulation of a high-energy impact on Al<sub>2</sub>O<sub>3 | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 94. DOI: 10.17223/19988621/94/13

Numerical simulation of a high-energy impact on Al2O3 | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 94. DOI: 10.17223/19988621/94/13

Download full-text version
Counter downloads: 85