Dynamic analysis of a three-mass crank-slider mechanism based on its two-mass analog | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 96. DOI: 10.17223/19988621/96/10

Dynamic analysis of a three-mass crank-slider mechanism based on its two-mass analog

This paper presents a dynamic analysis of a planar three-mass crank-slider mechanism of the “Tolchin inertioid” type. Based on the axiom of constraints applied to inertial forces - the inertial forces of two interacting bodies are mutually applied to these bodies and act on them through their constraints, which can be discarded, and its reactions replaced by the inertial forces of these bodies, - a mathematical model of this mechanism is obtained in terms of Newton's second law written in an inertial frame of reference with account for the inertial domain formed by the resulting inertial force of the counter synchronous rotational motion of the working bodies of the mechanism relative to its slider and the dissipative forces acting on this slider. The displacement of the center of mass of this mechanism is simulated numerically. The minimum level of dissipation of the external environment up to which the displacement of the center of mass is constant and below which it tends to zero, is recorded. In practice, the revealed effect can be used as a basis when developing devices for directed discrete motion in a medium with low dissipation, for instance, in a liquid medium and on solid horizontal surfaces with low linear viscous resistance to motion.

Download file
Counter downloads: 1

Keywords

three-mass crank-slider mechanism, two-mass analogue, single-mass equivalent, dissipative medium, equations of motion, center of mass moving effect

Authors

NameOrganizationE-mail
Savel’kaev Sergey V.Siberian State University of Geosystems and Technologiessergei.savelkaev@yandex.ru
Всего: 1

References

Толчин В.Н. Инерциоид. Силы инерции как источник поступательного движения. Пермь: Кн. изд-во, 1977. 100 с.
Савелькаев С.В. Динамический анализ двухмассовой механической системы в диссипа тивной среде с учетом сил инерции // Вестник Томского государственного университета. Математика и механика. 2024. № 87. С. 135-149. doi: 10.17223/19988621/87/11.
Савелькаев С.В. Эффект независимости величины смещения центра масс механической системы от диссипативности внешней среды // Механика машин, механизмов и материалов. 2011. № 4 (17). С. 42-48.
Никитин Н.Н. Курс теоретической механики. М.: Высш. школа, 1990. 607 с.
Егоров А.Г., Захарова О.С. Энергетически оптимальное движение вибратора в среде с наследственным законом сопротивления // Известия РАН. Теория и системы управления. 2015. № 3. С. 168-176.
Черноусько Ф.Л. Оптимальные периодические движения двухмассовой системы в сопро тивляющейся среде // Прикладная математика и механика. 2008. Т. 72, вып. 2. С. 202-215.
Гулиа Н.В. Инерция. М.: Наука, 1982. 152 с. (Наука и технический прогресс).
Шипов Г.И. Теория физического вакуума. М.: НТ-Центр, 1993. 362 c.
Иванов Н.И. Ритмодинамика. М.: Энергия, 2007. 221 с.
 Dynamic analysis of a three-mass crank-slider mechanism based on its two-mass analog | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 96. DOI: 10.17223/19988621/96/10

Dynamic analysis of a three-mass crank-slider mechanism based on its two-mass analog | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2025. № 96. DOI: 10.17223/19988621/96/10

Download full-text version
Counter downloads: 125