On generalized orthogonal partial metric spaces: α, β-admissible mappings and fixed point results
In this paper, we introduce the notion of α, β-admissible mappings as an extension of the so-called a-admissible mappings. After that, we propose for this class of mappings a new fixed point result in the setting of generalized orthogonal partial metric spaces. At the end of the results, to illustrate wide usability of our findings, we establish the existence and the uniqueness of solutions for a class of functional equations arising in dynamic programming.
Keywords
fixed point,
α, β-admissible mapping,
generalized orthogonal set,
partial metricAuthors
| Touail Youssef | University Sidi Mohamed Ben Abdellah | youssef9touail@gmail.com |
Всего: 1
References
Matthews S.G. (1994) Partial metric topology. Annals of the New York Academy of Sciences. pp. 183-197. DOI: 1Q.im/j.1749-6632.1994.tb44144.x.
Touail Y., Jaid A., El Moutawakil D. (2023) New contribution in fixed point theory via an auxiliary function with an application. Ricerche di Matematica. 72. pp. 181-191. DOI: 10.1007/s11587-021-00645-6.
Ciric L., Samet B., Aydi H., Vetro C. (2011) Common fixed points of generalized contractions on partial metric spaces and an application. Applied Mathematics and Computation. 218(6). pp. 2398-2406. DOI: 10.1016/j.amc.2011.07.005.
Touail Y., El Moutawakil D. (2021) -contractions and some fixed point results on generalized orthogonal sets. Rendiconti del Circolo Matematico di Palermo. Serie II. 70. pp. 1459-1472. DOI: 10.1007/s12215-020-00569-4.
Eshaghi Gordji M., Rameani M., De La Sen M., Cho Y.J. (2017) On orthogonal sets and Banach fixed point theorem. Fixed Point Theory. 18(2). pp. 569-578. DOI: 10.24193/fpt-ro.2017.2.45.
Touail Y., El Moutawakil D. (2021) Fixed point theorems on orthogonal complete metric spaces with an application.International Journal of Nonlinear Analysis and Applications. 12(2). pp. 1801-1809. DOI: 10.22075/ijnaa.2021.23033.2464.
Wardowski D. (2012) Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications. 94. DOI: 10.1186/1687-1812-2012-94.
Secelean N.A., Wardowski D. (2016) F-contractions: not necessarily nonexpansive Picard operators. Results in Mathematics. 70(3-4). pp. 415-431. DOI: 10.1007/s00025-016-0570-7.
Touail Y., Jaid A., El Moutawakil D. (2023) Fixed point theorems on orthogonal metric spaces via T-distances. St. Petersburg State Polytechnical University Journal: Physics and Mathematics. 16(4). pp. 215-223. DOI: 10.18721/JPM.16417.
Touail Y., Jaid A., El Moutawakil D. (2023) A new common fixed point theorem on orthogonal metric spaces and an application. Vestnik Samarskogo gosudarstvennogo tekhnich-eskogo universiteta. Seriya: Fiziko-matematicheskiye nauki - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 27(4). pp. 737-744. DOI: 10.14498/vsgtu1998.
Touail Y. (2022) On multivalued -contractions on generalized orthogonal sets with an application to integral inclusions. Problemy Analiza - Issues of Analysis. 11(3). pp. 109-124. DOI: 10.15393/j3.art.2022.12030.
Samet B., Vetro C., Vetro P. (2012) Fixed point theorems for a-y-contractive type mappings. Nonlinear Analysis: Theory, Methods and Applications. 75(4). pp. 2154-2165. DOI: 10.1016/j.na.2011.10.014.
Hussain N., Karapinar E., Salimi P., Akbar F. (2013) a-admissible mappings and related fixed point theorems. Journal of Inequalities and Applications. 2013:114. DOI: 10.1186/1029-242X-2013-114.
Karapinar E. (2014) α, β-Geraghty contraction type mappings and some related fixed point results. Filomat. 28(1). pp. 37-48. DOI: 10.2298/FIL1401037K.
La Rosa V., Vetro P.Common fixed points for α, β-contractions in generalized metric spaces. Nonlinear Analysis: Modelling and Control. 19(1). 43-54 (2014). DOI: 10.15388/NA.2014.1.3.
Romaguera S. (2010) A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory and Applications. 2010: Article ID 493298, 6 pages. DOI: 10.1155/2010/493298.
Bellman R. (1957) Dynamic Programming. Princeton University Press. DOI: 10.2307/j.ctv1 nxcw0f.
Bellman R., Lee E.S. (1978) Functional equations arising in dynamic programming. Aequa-tiones Mathematicae. 17. pp. 1-18. DOI: 10.1007/BF01818535.
Caristi J. (1976) Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society. 215. pp. 241-251.