Numerical study of the mechanical behavior of a spinal segment with osteosarcoma under physiological and acoustic loading
Determination of the stress state is a key aspect in developing methods for the mechanical stimulation of structural reorganization processes in biological tissues. The most important features of human skeletal materials include permeability, porosity (varying in a wide range of values and saturated with biological fluid), and a broad spectrum of elastic properties. Neoplastic processes in the bone matrix lead to local structural reorganization of the tissue in the affected area, which is characterized by reduced elastic characteristics and permeability. A macromechanical model of the fourth and fifth thoracic vertebrae segments is developed with allowance for realistic poroelastic parameters of biological tissues, including tumor formation. To describe the mechanical behavior of biological tissues, the modified Biot model of poroelasticity is used and adapted to the method of movable cellular automata. A geometric model of the thoracic spine segment is constructed in FreeCAD, accounting for its structural features. The model is studied under loads similar to physiological conditions and under external acoustic exposure. Analysis of the simulation results based on mechanobiological principles shows that under physiological loading, the levels of hydrostatic and pore fluid pressures are insufficient to suppress the differentiation and proliferation of cancer cells. Under acoustic exposure with an intensity of 0.2-0.3 mJ/mm2 in the area with neoplastic process, the conditions are provided for transferring healthy stem cells and regeneration of bone tissue in the affected area.
Keywords
stress-strain state,
poroelastic model,
method of movable cellular automata,
biological tissues,
cancerAuthors
| Eremina Galina M. | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences | anikeeva@ispms.ru |
| Smolin Aleksey Yu. | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences; Tomsk State University | asmolin@ispms.ru |
| Martyshina Irina P. | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences | mira@ispms.ru |
Всего: 3
References
Jiang Z.Y., Liu J.B., Wang X.F., Ma Y.S., Fu D. Current status and prospects of clinical treatment of osteosarcoma // Technology in Cancer Research & Treatment. 2022. V. 21. Art. 15330338221124696. doi: 10.1177/15330338221124696.
Riehl B.D., Kim E., Bouzid T., Lim J.Y. The role of microenvironmental cues and mechanical loading milieus in breast cancer cell progression and metastasis // Frontiers in Bioengineering and Biotechnology. V. 8. Art. 608526. doi: 10.3389/fbioe.2020.608526.
Kalli M., Stylianopoulos T. Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis // Frontiers in Oncology. 2018. V. 8. Art. 55. doi: 10.3389/ fonc.2018.00055.
Akinpelu A., Akinsipe T., Avila L.A., Arnold R.D., Mistriotis P. The impact of tumor microenvi ronment: unraveling the role of physical cues in breast cancer progression // Cancer Metastasis Review. 2024. V. 43 (2). P. 823-844. doi: 10.1007/s10555-024-10166-x.
Blanco H., Gomez J., Melchor R., Palma J., Soler G. Mechanotransduction in tumor dynamics modeling // Phys. Life Review. 2023. V. 44. P. 279-301. doi: 10.1016/j.plrev.2023.01.017.
Verbruggen S. W. Role of the osteocyte in bone metastasis - The importance of networking // Journal Bone Oncology. 2024. V. 44. Art. 100526. doi: 10.1016/j.jbo.2024.100526.
Mpekris F., Papaphilippou P.C., PanagiM., Voutouri C., Michael C., Charalambous A., Marinov Dinev M., Katsioloudi A., Prokopi-Demetriades M., Anayiotos A., Cabral H., Krasia-Christoforou T., Stylianopoulos T. Pirfenidone-loaded polymeric micelles as an effective mechanotherapeutic to potentiate immunotherapy in mouse tumor models // ACS Nano. 2023. V. 17 (24). P. 24654-24667. doi: 10.1021/acsnano.3c03305.
Faraldi M., Gerosa L., Gomarasca M., Sansoni V., Perego S., Ziemann E., Banfi G., Lombardi G. A physically active status affects the circulating profile of cancer-associated miRNAs // Diagnostics. 2021. V. 11 (5). Art. 820. doi: 10.3390/diagnostics11050820.
Vorobiev A.I., Gorgidze L.A., Zakharov V.N. Influence of the shock-wave pulses of microsecondrange on tumor cells // Russian Journal of Hematology and Transfusiology. 2016. V. 61 (2). P. 81-87. doi: 10.18821/0234-5730-2016-61-2-81-87.
Chang C.L., Chen K.H., Sung P.H., Chiang J.Y., Huang C.R., Chen H.H., Yip H.K. Combined high energy of extracorporeal shock wave and 5-FU effectively suppressed the proliferation and growth of tongue squamous cell carcinoma // Biomedicine & Pharmacotherapy. 2021. V. 142. Art. 112036. doi: 10.1016/j.biopha.2021.112036.
Macnamara C.K., Caiazzo A., Ramis-Conde I., Chaplain M.A.J.Computational modelling and simulation of cancer growth and migration within a 3D heterogeneous tissue: The effects of fibre and vascular structure // Journal of Computational Science. 2020. V. 40. Art. 101067. doi: 10.1016/j.jocs.2019.101067.
Kim B.J., Ahn H.Y., Song C. A novel computer modeling and simulation technique for bronchi motion tracking in human lungs under respiration // Physical and Engineering Sciences in Medicine. 2023. V. 46 (4). P. 1741-1753. doi: 10.1007/s13246-023-01336-2.
Kulkarni A.G., Kumar P., Shetty G.M., Roy S.,Manickam P.S., Dhason R., Chadalavada A.R.S.S., Adbalwad Y.M. Finite element analysis comparing the biomechanical parameters in multilevel posterior cervical instrumentation model involving lateral mass screw versus transpedicular screw fixation at the C7 vertebra // Asian Spine Journal. 2024. V. 18 (2). P. 163-173. doi: 10.31616/asj.2023.0231.
Чайковская Т.В. Эффективные механические параметры костных тканей для подбора индивидуальных остеоимплантатов // Вестник Томского государственного университета. Математика и механика. 2024. № 89. C. 162-175. doi: 10.17223/19988621/89/12.
Garcke H., Kovacs B., Trautwein D. Viscoelastic Cahn-Hilliard models for tumour growth // Mathematical Models & Methods in Applied Sciences. 2022. V. 32 (13). P. 2673-2758. doi: 10.48550/arXiv.2204.04147.
Reyes-Aldasoro C.C. Modelling the tumour microenvironment, but what exactly do we mean by “Model”? // Cancers. 2023. V. 15 (15). Art. 3796. doi: 10.3390/cancers15153796.
de Melo Quintela B., Hervas-Raluy S., Garcia-Aznar J.M., Walker D., Wertheim K.Y., Viceconti M. A theoretical analysis of the scale separation in a model to predict solid tumour growth // Journal of Theoretical Biology. 2022. V. 547. Art. 111173. doi: 10.1016/j.jtbi.2022.111173.
Borau C., Wertheim K.Y., Hervas-Raluy S., Sainz-De Mena D., Walker D., Chisholm R., Richmond P., Varella V., Viceconti M., Montero A., Gregori-Puigjane E., Mestres J., KasztelnikM., Garca-Aznar J.M. A multiscale orchestrated computational framework to reveal emergent phenomena in neuroblastoma // Computer Methods and Programs in Biomedicine. 2023. V. 241. Art. 107742. doi: 10.1016/j.cmpb.2023.10774.
Katsamba I., Evangelidis P., Voutouri C., Tsamis A., Vavourakis V., Stylianopoulos T. Biomechanical modelling of spinal tumour anisotropic growth // Proceedings of the Royal Society A. 2020. V. 4476 (2238). Art. 20190364. doi: 10.1098/rspa.2019.0364.
In Multiscale Biomechanics and Tribology of Inorganic and Organic Systems / E.V. Shilko, O.S. Vasiljeva (eds.). Cham: Springer, 2021. doi: 10.1007/978-3-030-60124-9_4 (Springer Tracts in Mechanical Engineering).
Augat P., Schorlemmer S. The role of cortical bone and its microstructure in bone strength // Age Ageing. 2006. V. 35, suppl 2. P. ii27-ii31. doi: 10.1093/ageing/afl081.
Hashin Z., Shtrikman S. Note on a variational approach to the theory of composite elastic materials // Journal Franklin Institute. 1961. V. 271. P. 336-341.
Fan R.X., Liu J., Li Y.L., Liu J., Gao J.Z. Finite element investigation of the effects of the low-frequency vibration generated by vehicle driving on the human lumbar mechanical properties // BioMed Research International. 2018. V. 2018. Art. 7962414. doi: 10.1155/2018/ 7962414.
Caddy G., Stebbing J., Wakefield G., Xu X.Y. Modelling of nanoparticle distribution in a spherical tumour during and following local injection // Pharmaceutics. 2022. V. 14 (8). Art. 1615. doi: 10.3390/pharmaceutics14081615.
Cowin S.C., Doty S.B. Tissue Mechanics. New York: Springer, 2007. doi: 10.1007/978-0-387-49985-7.
Claus A., Hides J., Moseley G.L., Hodges P. Sitting versus standing: does the intradiscal pressure cause disc degeneration or low back pain? // Journal of Electromyography & Kinesiology. 2008. V. 18 (4). P. 550-558. doi: 10.1016/j.jelekin.2006.10.011.
Anderson D.E., Mannen E.M., Sis H.L., Wong B.M., Cadel E.S., Friis E.A., Bouxsein M.L. Effects of follower load and rib cage on intervertebral disc pressure and sagittal plane curvature in static tests of cadaveric thoracic spines // Journal Biomechanics. 2016. V. 49 (7). P. 10781084. doi: 10.1016/j.jbiomech.2016.02.038.
Simon U., Augat P., Utz M., Claes L. A numerical model of the fracture healing process that describes tissue development and revascularization // Computer Methods in Biomechanics and Biomedical Engineering. 2021. V. 14 (1). P. 79-93. doi: 10.1080/10255842.2010.499865.