Numerical modeling of the contact stress distribution in a cutting wedge during the milling of AISI 304 and Grade 5 alloys with a carbide conical end mill
This paper presents the results of the finite element modeling of the milling of AISI 304 SS stainless steel and Grade 5 titanium alloy. The mathematical formulation of the problem is outlined along with the assumptions and simplifications adopted to enable efficient computation. The results of the numerical simulations are reported, taking into account variations in the cutting conditions, including the cutting regimes and edge microgeometry. A multilevel model is proposed in which functional relations between the tool design parameters, cutting edge sharpness, cutting modes, characteristics of the processed material, and the arising equivalent von Mises stresses in the cutting wedge of the milling tooth are specified. The study results make it possible to obtain a cutting part with improved geometrical parameters of a new generation tool, to increase its rigidity and strength, and to improve the tool performance.
Keywords
numerical modeling of cutting,
finite element method,
milling,
contact stresses,
steel,
titanium alloyAuthors
| Pivkin Pyotr M. | Moscow State University of Technology STANKIN | pmpivkin@gmail.com |
| Babaev Artyom S. | Tomsk State University | a.s.babaev@mail.tsu.ru |
| Kozlov Viktor N. | Tomsk State University | kozlov-viktor@bk.ru |
| Semyonov Artyom R. | Tomsk State University | artems2102@yandex.ru |
| Nazarenko Ekaterina S. | Moscow State University of Technology STANKIN | katarina.86@bk.ru |
| Nadykto Aleksey B. | Moscow State University of Technology STANKIN | abnadykto@yandex.ru |
Всего: 6
References
Al-Athel K.S., Gadala M.S. The use of volume of solid (VOS) approach in simulating metal cutting with chamfered and blunt tools // Int. J. Mech. Sci. 2011. V. 53. P. 23-30. doi: 10.1016/j.ijmecsci.2010.10.003.
Denkena B., Kohler J., Mengesha M.S. Influence of the cutting edge rounding on the chip forma tion process. Part 1. Investigation of material flow, process forces, and cutting temperature // Prod. Eng. Res. Devel. 2012. V. 6. P. 329-338 doi: 10.1007/s11740-012-0366-x.
Black J.T., Huang J.M. An evaluation of chip separation criteria for the FEM simulation of machining // ASME J. Manuf. Sci. Eng. 1996. V. 118. P. 545-553.
Komvopoulos K., Erpenbeck S.A. Finite element modeling of orthogonal metal cutting // ASME J. Eng. Ind. 1991. V. 113 (3). P. 253-267.
Lin Z.C., Lin S.Y. A coupled finite element model of thermoelastic-plastic large deformation for orthogonal cutting // ASME J. Eng. Ind. 1992. V. 114. P. 218-226.
Strenkowski J.S., Carroll J.T. Finite element models of orthogonal cutting with application to single point diamond turning // Int. J. Mech. Sci. 1986. V. 30 (12). P. 899-920.
Yen Y.-C., Jain A., Altan T. A finite element analysis of orthogonal machining using different tool edge geometrie // J. Mater. Process. Manuf. 2004. V. 146. P. 72-81. doi: 10.1016/S0924-0136(03)00846-X.
Yusoff A.R., Turner S., Taylor C.M., Sims N.D. The role of tool geometry in process damping milling // Int. J. Adv. Manuf. Technol. 2010. V. 50. P. 883-895. doi: 10.1007/s00170-010-2586-6.
AUTODYN-TM Interactive non-linear dynamic analysis software theory manual. Horsam: Century Dynamics Inc., 1998.
Kozlov V., Babaev A., Schulz N. et al. Study of a Methodology for Calculating Contact Stresses during Blade Processing of Structural Steel // Metals. 2023. V. 13 (12). Art. 2009. doi: 10.3390/met13122009.
Skripnyak V.V., Skripnyak V.A. Hexagonal Close-Packed (hcp) Alloys under Dynamic Impacts // J. Appl. Phys. 202. V. 28 (131). P. 16-19.
Скрипняк Е.Г., Скрипняк Н.В., Козулин А.А., Скрипняк В.А. Моделирование влияния наноструктурированного поверхностного слоя на механическое поведение алюминиевых и магниевых сплавов при динамических воздействиях // Известия вузов. Физика. 2010. Т. 53, № 12-2. С. 235-242.
Zhang W., Wang X., Hu Y. et al. Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel // Int. J. Mach. Tool. Manufact. 2018. V. 130. P. 36-48. doi: 10.1016/ j.ijmachtools.2018.03.008.
Zou Z. Research on inverse identification of Johnson-Cook constitutive parameters for turning 304 stainless steel based on coupling simulation // JMR&T. 2023. V. 23. P. 2244-2262.
Zhuang K., Zhou S., Zou L., Lin L., Liu Y., Weng J., Gao J. Numerical investigation of sequential cuts residual stress considering tool edge radius in machining of AISI 304 stainless steel // Simulation Modelling Practice and Theory. 2022. V. 118. Art. 102525.
Molinari A., Musquar C., Sutter G. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling // Int. J. Plast. 2002. V. 18. P. 443-459.